Cauchie, Emilie ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Analyse des denrées alimentaires
Delhalle, Laurent ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Microbiologie des denrées alimentaires
Baré, Ghislain
Tahiri, Assia ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Ecologie végétale et microbienne
Taminiau, Bernard ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Microbiologie des denrées alimentaires
Korsak Koulagenko, Nicolas ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Département de sciences des denrées alimentaires (DDA)
Burteau, Sophie
Fall, Papa Abdoulaye
Farnir, Frédéric ; Université de Liège - ULiège > Dpt. de gestion vétérinaire des Ressources Animales (DRA) > Biostatistiques et bioinformatique appliquées aux sc. vétér.
Daube, Georges ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Microbiologie des denrées alimentaires
Language :
English
Title :
Modelling the growth and interaction between Brochothrix thermosphacta, Pseudomonas spp. and Leuconostoc gelidum in minced pork meat samples.
Alvarez-Sieiro P., Montalban-Lopez M., Mu D., Kuipers O. P., (2016). Bacteriocins of lactic acid bacteria: extending the family. Appl. Microbiol. Biotechnol. 100 2939–2951. 10.1007/s00253-016-7343-9 26860942
Andritsos N. D., Mataragas M., Mavrou E., Stamatiou A., Drosinos E. H., (2012). The microbiological condition of minced pork prepared at retail stores in Athens, Greece. Meat Sci. 91 486–489. 10.1016/j.meatsci.2012.02.036 22459497
Antunes-Rohling A., Artaiz A., Calero S., Halaihel N., Guillén S., Raso J., et al. (2019). Modeling microbial growth in modified-atmosphere-packaed hake (Merluccius merluccius) fillets stored at different temperatures. Food Res. Int. 122 506–516. 10.1016/j.foodres.2019.05.018 31229106
Ast J. C., Cleewerck I., Engelbeen K., Urbanczyk H., Thompson F. L., De Vos P., et al. (2007). Photobacterium kishitanii sp. nov., a luminous marine bacterium stmbiotic with deep-sea fishes. Int. J. Syst. Evol. Microbiol. 57 2073–2078. 10.1099/ijs.0.65153-0 17766874
Augustin J.-C., Carlier V., (2000). Modelling the growth rate of Listeria monocytogenes with a multiplicative type model including interactions between environmental factors. Int. J. Food Microbiol. 56 53–70. 10.1016/S0168-1605(00)00224-5
Baka M., Noriega E., Mertens L., Van Derlinden E., Van Impe J. F. M., (2014). Protective role of indigenous Leuconostoc carnosum against Listeria monocytogenes on vacuum packed Frankfurter sausages at suboptimal temperatures. Food Res. Int. 66 197–206. 10.1016/j.foodres.2014.08.011
Baranyi J., Roberts T. A., (1994). A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 23 277–294. 10.1016/0168-1605(94)90157-0
Baty F., Delignette-Muller M.-L., (2013). nlsMicrobio: Data Sets and Nonlinear Regression Models Dedicated to Predictive Microbiology. R Package Version 0.0-1. Available at: https://CRAN.R-project.org/package=nlsMicrobio (accessed December 5, 2018).
Benson A. K., David J. R. D., Gilbreth S. E., Smith G., Nietfeldt H., Legge R., et al. (2014). Microbial successions are associated with changes in chemical profiles of a model refrigerated fresh pork sausage during an 80-day shelf life study. Appl. Environ. Microbiol. 80 5178–5194. 10.1128/AEM.00774-14 24928886
Berlow E. L., Neutel A.-M., Cohen J. E., De Ruiter P. C., Ebenman B., Emmerson M., et al. (2004). Interaction strengths in food webs: issues and opportunities. J. Anim. Ecol. 73 585–598. 10.1111/j.0021-8790.2004.00833.x 21985535
Bjornsdottir-Butler K., McCarthy S. A., Dunlap P. V., Benner J. A., (2016). Photobacterium angustum and Photobacterium kishitanii, psychrotrophic high-level histamine-producing bacteria indigenous to tuna. Appl. Environ. Microbiol. 82 2167–2176. 10.1128/AEM.02833-15 26826233
Bruce J. B., West S. A., Griffin A. S., (2017). Bacteriocins and the assembly of natural Pseudomonas fluorescens populations. J. Evol. Biol. 30 352–360. 10.1111/jeb.13010 28000957
Cadavez V. A. P., Campagnollo F. B., Silva R. A., Duffner C. M., Schaffner D. W., Sant’Ana A. S., et al. (2019). A comparison of dynamic tertiary and competition models for describing the fate of Listeria monocytogenes in Minas fresh cheese during refrigerated storage. Food Microbiol. 79 48–60. 10.1016/j.fm.2018.11.004 30621875
Casaburi A., Piombino P., Nychas G.-J., Villani F., Ercolini D., (2014). Bacterial populations and the volatilome associated to meat spoilage. Food Microbiol. 45 83–102. 10.1016/j.fm.2014.02.002 25481065
Cauchie E., Delhalle L., Taminiau B., Tahiri A., Korsak N., Burteau S., et al. (2019). Assessment of spoilage bacterial communities in food wrap and modified atmospheres-packed minced pork meat samples by 16S rDNA metagenetic analysis. Front. Microbiol. 10:3074. 10.3389/fmicb.2019.03074
Cauchie E., Gand M., Kergourlay G., Taminiau B., Delhalle L., Korsak N., et al. (2017). The use of 16 rRNA gene metagenetic monitoring of refrigerated food products for understanding the kinetic of microbial subpopulations at different storage temperatures: the example of white pudding. Int. J. Food Microbiol. 247 70–78. 10.1016/j.ijfoodmicro.2016.10.012 27751567
Chaillou S., Chaulot-Talmon A., Caekebeke H., Cardinal M., Christieans S., Denis C., et al. (2015). Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage. Int. Soc. Microb. Ecol. J. 9 1105–1118. 10.1038/ismej.2014.202 25333463
Chaix E., Broyart B., Couvert O., Guillaume C., Gontard N., Guillard V., (2015). Mechanistic model coupling gas exchange dynamics and Listeria monocytogenes growth in modified atmosphere packaging of non respiring food. Food Microbiol. 51 192–205. 10.1016/j.fm.2015.05.017 26187845
Chauvet E., Paulet J. E., Previte J. P., Walls Z., (2002). A lotka-volterra three-species food chain. Math. Mag. 75 243–255. 10.2307/3219158
Cornu M., Billoir E., Bergis H., Beaufort A., Zuliani V., (2011). Modeling microbial competition in food: application to the behavior of Listeria monocytogenes and lactic acid flora in pork meat products. Food Microbiol. 28 639–647. 10.1016/j.fm.2010.08.007 21511123
Correia Peres Costa J. C., Bover-Cid S., Bolivar A., Zurera G., Pérez-Rodriguez F., (2019). Modelling the interaction of the sakacin-producing Lactobacillus sakei CTC494 and Listeria monocytogenes in filleted gilthead sea bream (Sparus aurata) under modified atmosphere packaging at isothermal and non-isothermal conditions. Int. J. Food Microbiol. 297 72–84. 10.1016/j.ijfoodmicro.2019.03.002 30901694
Couvert O., Divanac’h M.-L., Lochardet A., Thuault D., Huchet V., (2019). Modelling the effect of oxygen concentration on bacterial growth rates. Food Microbiol. 77 21–25. 10.1016/j.fm.2018.08.005 30297052
Couvert O., Guégan S., Hézard B., Huchet V., Lintz A., Thuault D., et al. (2017). Modeling carbon dioxide effect in a controlled atmosphere and its interactions with temperature and pH on the growth of L. monocytogenes and P. fluorescens. Food Microbiol. 68 89–96. 10.1016/j.fm.2017.07.003 28800830
Crotta M., Paterlini F., Rizzi R., Guitian J., (2016). Consumers’ behavior in quantitative microbial risk assessment for pathogens in raw milk: incorporation of the likelihood of consumption as a function of storage time and temperature. J. Dairy Sci. 99 1029–1038. 10.3168/jds.2015-10175 26686719
Dalcanton F., Carrasco E., Pérez-Rodriguez F., Posada-Izquierdo G. D., de Aragao G. M. F., Garcia-Gimeno R. M., (2018). Modeling the combined effects of temperature, pH, and sodium chloride and sodium lactate concentrations on the growth rate of Lactobacillus plantarum ATCC 8014. J. Food Qual. 5 1–10. 10.1155/2018/1726761
Dalcanton F., Pérez-Rodriguez F., Posada-Izquierdo G. D., de Aragao G. M. F., Garcia-Gimeno R. M., (2013). Modelling growth of Lactobacillus plantarum and shelf life of vacuum-packaged cooked chopped pork at different temperatures. Int. J. Food Sci. Technol. 48 2580–2587. 10.1111/ijfs.12252
Dalgaard P., Mejholm O., Christiansen T. J., Huss H. H., (1997). Importance of Photobacterium phosphoreum in relation to spoilage of modified atmosphere-packed fish products. Lett. Appl. Microbiol. 24 373–378. 10.1046/j.1472-765X.1997.00152.x
De Filippis F., Pennacchia C., Di Pasqua R., Fiore A., Fogliano V., Villani F., et al. (2013). Decarboxylase gene expression and cadaverine and putrescine production by Serratia proteamaculans in vitro and in beef. Int. J. Food Microbiol. 165 332–338. 10.1016/j.ijfoodmicro.2013.05.021 23811038
Del Blanco A., Caro I., Quinto E. J., Mateo J., (2017). Quality changes in refrigerated stored minced pork wrapped with plastic cling film and the effect of glucose supplementation. Meat Sci. 126 55–62. 10.1016/j.meatsci.2016.12.007 28043049
Delhalle L., Korsak N., Taminiau B., Nezer C., Burteau S., Delcenserie V., et al. (2016). Exploring the bacterial diversity of Belgian steak tartare using metagenetics and quantitative real-time PCR analysis. J. Food Prot. 79 220–229. 10.4315/0362-028X.JFP-15-185 26818982
Den Besten H. M. W., Aryani D. C., Metselaar K. I., Zwietering M. H., (2017). Microbial variability in growth and heat resistance of a pathogen and a spoiler: all variabilities are equal but some are more equal than others. Int. J. Food Microbiol. 240 24–31. 10.1016/j.ijfoodmicro.2016.04.025 27207811
Dens E. J., Vereecken K. M., Van Impe J. F., (1999). A prototype model structure for mixed microbial populations in homogeneous food products. J. Theor. Biol. 201 159–170. 10.1006/jtbi.1999.1021 10600360
Devlieghere F., Van Belle B., Debevere J., (1999). Shelf life of modified atmosphere packed cooked meat products: a predictive model. Int. J. Food Microbiol. 46 57–70. 10.1016/S0168-1605(98)00175-5 10050685
Dominguez S. A., Schaffner D. W., (2007). Development and validation of a mathematical model to describe the growth of Pseudomonas spp. in raw poultry stored under aerobic conditions. Int. J. Food Microbiol. 120 287–295. 10.1016/j.ijfoodmicro.2007.09.005 17949841
Doulgeraki A. I., Ercolini D., Villani F., Nychas G.-J. E., (2012). Spoilage microbiota associated to the storage of raw meat in different conditions. Int. J. Food Microbiol. 157 130–141. 10.1016/j.ijfoodmicro.2012.05.020 22682877
Fadda S., Lopez C., Vignolo G., (2010). Role of lactic acid bacteria during meat conditioning and fermentation: peptides generated as sensorial and hygienic biomarkers. Meat Sci. 86 66–79. 10.1016/j.meatsci.2010.04.023 20619799
Fakruddin M., Mazumder R. M., Mannan K. S. B., (2012). Predictive microbiology: modeling microbial responses in food. Ceylon J. Sci. Biol. Sci. 40 121–131. 10.4038/cjsbs.v4i2.3928
Fogarty C., Whyte P., Brunton N., Lyng J., Smyth C., Fagan J., et al. (2019). Spoilage indicator bacteria in farmed Atlantic salmon (Salmo salar) stored on ice for 10 days. Food Microbiol. 77 38–42. 10.1016/j.fm.2018.08.001 30297054
Fougy L., Desmonts M.-H., Coeuret G., Fassel C., Hamon E., Hézard B., et al. (2016). Reducing salt in raw pork sausages increases spoilage and correlates with reduced bacterial diversity. Appl. Environ. Microbiol. 82 3928–3940. 10.1128/AEM.00323-16 27107120
Geeraerts W., Pothakos V., De Vuyst L., Leroy F., (2017). Diversity of the dominant bacterial species on sliced cooked pork products at expiration date in the Belgian retail. Food Microbiol. 65 236–243. 10.1016/j.fm.2017.03.007 28400008
Giuffrida A., Valenti D., Ziino G., Spagnolo B., Panebianco A., (2009). A stochastic interspecific competition model to predict the behaviour of Listeria monocytogenes in the fermentation process of a traditional Sicilian salami. Eur. Food Res. Technol. 228 767–775. 10.1007/s00217-008-0988-6
Giuffrida A., Ziino G., Valenti D., Donato G., Panebianco A., (2007). Application of an interspecific competition model to predict the growth of Aeromonas hydrophila on fish surfaces during refrigerated storage. Arch. Lebensmittelhyg. 58 136–141. 10.2377/0003-925X-58-136
Gospavic R., Kreyenschmidt J., Bruckner S., Popov V., Haque N., (2008). Mathematical modelling for predicting the growth of Pseudomonas spp. in poultry under variable temperature conditions. Int. J. Food Microbiol. 127 290–297. 10.1016/j.ijfoodmicro.2008.07.022 18775580
Guillard V., Couvert O., Stahl V., Hanin A., Denis C., Huchet V., et al. (2016). Validation of a predictive model coupling gas transfer and microbial growth in fresh food packed under modified atmosphere. Food Microbiol. 58 43–55. 10.1016/j.fm.2016.03.011 27217358
Ham Y.-K., Kim H.-W., Hwang K.-E., Song D.-H., Kim Y.-J., Choi Y. S., et al. (2017). Effects of irradiation source and dose level on quality characteristics of processed meat products. Radiat. Phys. Chem. 130 259–264. 10.1016/j.radphyschem.2016.09.010
Hibbing M. E., Fuqua C., Parsek M. R., Peterson S. B., (2010). Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8 15–25. 10.1038/nrmicro2259 19946288
Hilgarth M., Fuertes S., Ehrmann M., Vogel R. F., (2018). Photobacterium carnosum sp. nov., isolated from spoiled modified atmosphere packaged poultry meat. Syst. Appl. Microbiol. 41 44–50. 10.1016/j.syapm.2017.11.002 29279139
Jääskeläinen E., Jakobsen L. M. A., Hultman J., Eggers N., Bertram H. C., Björkroth J., (2019). Metabolomics and bacterial diversity of packaged yellowfin tuna (Thunnus albacares) and salmon (Salmo salar) show fish species-specific spoilage development during chilled storage. Int. J. Food Microbiol. 293 44–52. 10.1016/j.ijfoodmicro.2018.12.021 30639999
Jameson J. E., (1962). A discussion of the dynamics of Salmonella enrichment. J. Hyg. 60 193–207. 10.1017/s0022172400039462 14451045
Kakagianni M., Kalantzi K., Beetsiotis E., Ghikas D., Lianou A., Koutsoumanis K. P., (2018). Development and validation of predictive models for the effect of storage temperature and pH on the growth boundaries and kinetics of Alicyclobacillus acidoterrestris ATTC 49025 in fruit drinks. Food Microbiol. 74 40–49. 10.1016/j.fm.2018.02.019 29706336
Kapetanakou A. E., Taoukis P., Skandamis P. N., (2019). Model development for microbial spoilage of package fresh-cut salad products using temperature and in-package CO2 levels as predictor variables. LWT – Food Sci. Technol. 113:108285. 10.1016/j.lwt.2019.108285
Kato Y., Sakala R. M., Hayashidani H., Kiuchi A., Kaneuchi C., Ogawa M., (2000). Lactobacillus algidus sp. nov., a psychrophilic lactic acid bacterium isolated from vacuum-packaged refrigerated beef. Int. J. Syst. Envol. Microbiol. 50 1143–1149. 10.1099/00207713-50-3-1143 10843056
Kim B.-J., Lee H.-J., Park S.-Y., Kim J., Han H.-U., (2000). Identification and characterization of Leuconostoc gelidum, isolated from Kimchi, a fermented cabbage product. J. Microbiol. 38 132–136.
Kim Y. H., Nam K. C., Ahn D. U., (2002). Volatile profiles, lipid oxidation and sensory characteristics of irradiated meat from different animal species. Meat Sci. 61 257–265. 10/1016/S0309-1740(01)00191-7
Koort J., Murros A., Coenye T., Eerola S., Vandamme P., Sukura A., et al. (2005). Lactobacillus oligofermentans sp. nov., associated with spoilage of modified-atmosphere-packaged poultry products. Appl. Environ. Microbiol. 71 4400–4406. 10.1128/AEM.71.8.4400-4406.2005 16085830
Koutsoumanis K., (2009). Modeling food spoilage in microbial risk assessment. J. Food Prot. 72 425–427. 10.4315/0362-028X-72.2.425 19350992
Kreyenschmidt J., Hubner A., Beierle E., Chonsch L., Sherer A., Petersen B., (2010). Determination of the shelf life of sliced cooked ham based on the growth of lactic acid bacteria in different steps of the chain. J. Appl. Microbiol. 108 510–520. 10.1111/j.1365-2672.2009.04451.x 19664065
Kumariya R., Garsa A. K., Rajput Y. S., Sood S. K., Akhtar N., (2019). Bacteriocins: classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microb. Pathog. 128 171–177. 10.1016/j.micpath.2019.01.002 30610901
Kuuliala L., Al Hage Y., Ioannidis A.-G., Sader M., Kerckgof F.-M., Vanderroost M., et al. (2018). Microbiological, chemical and sensory spoilage analysis of raw Atlantic cod (Gadus morhua) stored under modified atmospheres. Food Microbiol. 70 232–244. 10.1016/j.fm.2017.10.011 29173632
Le S., Josse J., Husson F., (2008). FactoMineR: an r package for multivariate analysis. J. Stat. Softw. 25 1–18. 10.18637/jss.v025.i01
Le Marc Y., Huchet V., Bourgeois C. M., Guyonnet J. P., Mafart P., Thuault D., (2002). Modelling the growth kinetics of Listeria as a function of temperature, pH and organic acid concentration. Int. J. Food Microbiol. 73 219–237. 10.1016/S0168-1605(01)00640-7 11934031
Lebert I., Robles-Olvera V., Lebert A., (2000). Application of polynomial models to predict growth of miwed cultures of Pseudomonas spp. and Listeria in meat. Int. J. Food Microbiol. 61 27–39. 10.1016/S0168-1605(00)00359-7 11028957
Leroi F., Fall P. A., Pilet M.-F., Chevalier F., Baron R., (2012). Influence of temperature, pH and NaCl concentration on the maximal growth rate of Brochothrix thermosphacta and a bioprotective bacteria Lactococcus piscium CNCM I-4031. Food Microbiol. 31 222–228. 10.1016/j.fm.2012.02.014 22608227
Li L., Cepeda J., Subbiah J., Froning G., Juneja V. K., Thippareddi H., (2017). Dynamic predictive model for growth of Salmonella spp. in scrambled egg mix. Food Microbiol. 64 39–46. 10.1016/j.fm.2016.12.007 28213033
Li N., Zhang Y., Wu Q., Gu Q., Chen M., Zhang Y., et al. (2019). High-throughput sequencing analysis of bacterial community composition and quality characteristics in refrigerated pork during storage. Food Microbiol. 83 86–94. 10.1016/j.fm.2019.04.013 31202422
Liu F., Yang R.-Q., Li Y.-F., (2006). Correlations between growth parameters of spoilage micro-organisms and shelf-life of pork stored under air and modified atmosphere at -2, 4 and 10°C. Food Microbiol. 23 578–583. 10.1016/j.fm.2005.10.002 16943054
Longhi D. A., Dalcanton F., Falcao de Arageo G. M., Carciofi B. A. M., Laurindo J. B., (2013). Assessing the prediction ability of different mathematical models for the growth of Lactobacillus plantarum under non-isothermal conditions. J. Theor. Biol. 335 88–96. 10.1016/j.jtbi.2013.06.030 23820038
Mann E., Wetzels S. U., Pinior B., Metzler-Zebeli B. U., Wagner M., Schmitz-Esser S., (2016). Psychrophile spoilers dominate the bacterial microbiome in musculature samples of slaughter pigs. Meat Sci. 117 36–40. 10.1016/j.meatsci.2016.02.034 26943946
Mansur A. R., Song E.-J., Cho Y.-S., Nam Y.-D., Choi Y.-S., Kim D.-O., et al. (2019). Comparative evaluation of spoilage-related bacterial diversity and metabolite profiles in chilled beef stored under air and vacuum packaging. Food Microbiol. 77 166–172. 10.1016/j.fm.2018.09.006 30297047
Mataragas M., Drosinos E. H., Vaidanis A., Metaxopoulos I., (2006). Development of a predictive model for spoilge of cooked cured meat products and its validation under constant and dynamic temperature storage conditions. J. Food Sci. 71 157–167. 10.1111/j.1750-3841.2006.00058.x 16786851
Mejlholm O., Dalgaard P., (2007). Modeling and predicting the growth of lactic acid bacteria in lightly preserved seafood and their inhibiting effect on Listeria monocytogenes. J. Food Prot. 70 2485–2497. 10.4315/0362-028x-70.11.2485 18044425
Mejlholm O., Dalgaard P., (2013). Development and validation of an extensive growth and growth boundary model for psychrotolerant Lactobacillus spp. in seafood and meat products. Int. J. Food Microbiol. 167 244–260. 10.1016/j.ijfoodmicro.2013.09.013 24140806
Mejlholm O., Dalgaard P., (2015). Modelling and predicting the simultaneous growth of Listeria monocytogenes and psychrotolerant lactic acid bacteria in processed seafood and mayonnaise-based seafood salads. Food Microbiol. 46 1–4. 10.1016/j.fm.2014.07.005 25475260
Membré J.-M., Boué G., (2018). Quantitative microbiological risk assessment in food industry: theory and practical application. Food Res. Int. 106 1132–1139. 10.1016/j.foodres.2017.11.025 29579908
Miks-Krajnik M., Yoon Y.-J., Ukuku D. O., Yuk H.-G., (2016). Identification and quantification of volatile chemical spoilage indexes associated with bacterial growth dynamics in aerobically stored chicken. J. Food Sci. 81 2006–2013. 10.1111/1750-3841.13371 27332555
Moller C. O. A., Ilg Y., Aabo S., Christensen B. B., Dalgaard P., Hansen T. B., (2013). Effect of natural microbiota on growth of Salmonella spp. in fresh pork – a predictive microbiology approach. Food Microbiol. 34 284–295. 10.1016/j.fm.2012.10.010 23541195
Moretro T., Moen B., Heir E., Hansen A. A., Langsrud S., (2016). Contamination of salmon fillets and processing plants with spoilage bacteria. Int. J. Food Microbiol. 237 98–108. 10.1016/j.ijfoodmicro.2016.08.016 27552347
Mounier J., Monnet C., Vallaeys T., Arditi R., Sarthou A.-S., Hélias A., et al. (2008). Microbial interaction within a cheese microbial community. Appl. Environ. Microbiol. 74 172–181. 10.1128/AEM.01338-07 17981942
Nadell C. D., Drescher K., Foster K. R., (2016). Spatial structure, cooperation and competition in biofilms. Nature 14 589–600. 10.1038/nrmicro2016.84 27452230
Ng W.-L., Bassler B. L., (2009). Bacterial quorum-sensing network architectures. Annu. Rev. Genet. 43 197–222. 10.1146/annurev-gnet-102108-13404 19686078
Nieminen T. T., Dalgaard P., Björkroth J., (2016). Volatile organic compounds and Photobacterium phosphoreum associated with spoilage of modified-atmosphere-packaged raw pork. Int. J. Food Microbiol. 218 86–95. 10.1016/j.ijfoodmicro.2015.11.003 26623935
Nieminen T. T., Nummela M., Björkroth J., (2015). Packaging gas selects lactic acid bacterial communities on raw pork. J. Appl. Microbiol. 119 1310–1316. 10.1111/jam.12890 26152532
Nychas G. J. E., Skandamis P. N., Tassou C. C., Koutsoumanis K. P., (2008). Meat spoilage during distribution. Meat Sci. 78 77–89. 10.1016/j.meatsci.2007.06.020 22062098
Nyhan L., Begley M., Mutel A., Qu Y., Johnson N., Callanan M., (2018). Predicting the combinatorial effects of water activity, pH and organic acids on Listeria growth in media and complex food matrices. Food Microbiol. 74 75–85. 10.1016/j.fm.2018.03.002 29706340
Pedrozo H. A., Dallagnol A. M., Vignolo G. M., Pucciarelli A. B., Schvezov C. E., (2019). Mechanistically inspired kinetic approach to describe interactions during co-culture growth of Carnobacterium maltaromaticum and Listeria monocytogenes. J. Food Sci. 84 2592–2602. 10.1111/1750-3841.14754 31429485
Pennacchia C., Ercolini D., Villani F., (2009). Development of a real-time PCA assay for the specific detection of Brochothrix thermosphacta in fresh and spoiled raw meat. Int. J. Food Microbiol. 134 230–236. 10.1016/j.ijfoodmicro.2009.07.005 19651454
Pennacchia C., Ercolini D., Villani F., (2011). Spoilage-related microbiota associated with chilled beef stored in air or vacuum pack. Food Microbiol. 28 84–93. 10.1016/j.fm.2010.08.010 21056779
Peruzy M. F., Murru N., Yu Z., Cnockaert M., Joossens M., Proroga Y. T. R., et al. (2019). Determination of the microbiological contamination in minced pork by culture dependent and 16S amplicon sequencing analysis. Int. J. Food Microbiol. 290 27–35. 10.1016/j.ijfoodmicro.2018.09.025 30292676
Pinon A., Zwietering M., Perrier L., Membré J.-M., Leporq B., Mettler E., et al. (2004). Development and validation of experimental protocols for use of cardinal models for prediction of microorganism growth in food products. Appl. Environ Microbiol. 70 1081–1087. 10.1128/AEM.70.2.1081-1087.2004 14766591
Pinter M. D., Harter T., McCarthy M. J., Augustine M. P., (2014). Towards usind NMR to screen for spoiled tomatoes stored in 1,000L, septically sealed, metal-lined totes. Sensors 14 4167–4176. 10.3390/s14034167
Pothakos V., Devlieghere F., Villani F., Björkroth J., Ercolini D., (2015). Lactic acid bacteria and their controversial role in fresh meat spoilage. Meat Sci. 109 66–74. 10.1016/j.meatsci.2015.04.014 25972087
Powell M., Schosser W., Ebel E., (2004). Considering the complexity of microbial community dynamics in food safety risk assessment. Int. J. Food Microbiol. 90 171–179. 10.1016/S0168-1605(03)00106-5 14698098
Psomas A. N., Nychas G.-J., Haroutounian S. A., Skandamis P. N., (2011). Development and validation of a tertiary simulation model for predicting the growth of the food microorganisms under dynamic and static temperature conditions. Comput. Electron. Agric. 76 119–129. 10.1016/j.compag.2011.01.013
Quinto E. J., Marin J. M., Caro I., Mateo J., Schaffner D. W., (2018). Bayesian modeling of two- and three-species bacterial competition in milk. Food Res. Int. 105 952–961. 10.1016/j.foodres.2017.12.033 29433294
R Core Team (2019). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Raimondi S., Nappi M. R., Sirangelo T. M., Leonardi A., Amaretti A., Ulrici A., et al. (2018). Bacterial community of industrial raw sausage packaged in modified atmosphere throughout the shelf life. Int. J. Food Microbiol. 280 78–86. 10.1016/j.ijfoodmicro.2018.04.041 29783046
Ratkowsky D. A., Lowry R. K., McMeekin T. A., Stokes A. N., Chandler R. E., (1983). Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J. Bacteriol. 154 1222–1226. 10.1128/jb.154.3.1222-1226.1983 6853443
Ratkowsky D. A., Olley J., McMeekin T. A., Ball A., (1982). Relationship between temperature and growth rate of bacterial cultures. J. Bacteriol. 149 1–5. 10.1128/jb.149.1.1-5.1982 7054139
Rosso L., Lobry J. R., Bajard S., Flandrois J. P., (1995). Convenient model to describe the combined effects of temperature and pH on microbial growth. Appl. Environ. Microbiol. 61 610–616. 10.1128/aem.61.2.610-616.1995 16534932
Rouger A., Moriceau N., Prévost H., Remenant B., Zagorec M., (2018). Diversity of bacterial communities in French chicken cuts stored under modified atmosphere packaging. Food Microbiol. 70 7–16. 10.1016/j.fm.2017.08.013 29173642
Rouger A., Remenant B., Prévost H., Zagorec M., (2017). A method to isolate bacterial communities and characterize ecosystems from food products: validation and utilization in as a reproductible chicken meat model. Int. J. Food Microbiol. 247 38–47. 10.1016/j.ijfoodmicro.2016.04.028 27184973
Saraiva C., Fontes M. C., Patarata L., Martins C., Cadavez V., Gonzalas-Barron U., (2016). Modelling the kinetics of Listeria monocytogenes in refrigerated fresh beef under different packaging atmospheres. Food Sci. Technol. 66 664–671. 10.1016/j.lwt.2015.11.026
Simpson R., Carevic E., (2004). Designing a modified atmosphere packaging system for foodservice portions on nonrespiring foods: optimal gas mixture and food/headspace ratio. Foodserv. Res. Int. 14 257–272. 10.1111/j.1745-4506.2004.tb00194.x
Stefanovic E., Fitzgerald G., McAulliffe O., (2017). Advances in the genomics and metabolomics of dairy lactobacilli: a review. Food Microbiol. 61 33–49. 10.1016/j.fm.2016.08.009 27697167
Stellato G., La Storia A., De Filippis F., Borriello G., Villani F., Ercoloni D., (2016). Overlap of spoilage-associated microbiota between meat and the meat processing environment in small-scale and large-scale retail distributions. Appl. Environ. Microbiol. 82 4045–4054. 10.1128/AEM.00793-16 27129965
Stoddard S. F., Smith B. J., Hein R., Roller B. R. K., Schmidt T. M., (2015). rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic. Acids Res. 43 593–598. 10.1093/nar/gky1201 25414355
Stoops J., Ruyters S., Busschaert P., Spaepen R., Verreth C., Claes J., et al. (2015). Bacterial community dynamics during colt storage of minced meat packaged under modified atmosphere and supplemented with different preservatives. Food Microbiol. 48 192–199. 10.1016/j.fm.2014.12.012 25791008
Tamplin M. L., (2018). Integrating predictive models and sensors to manage food stability in supply chains. Food Microbiol. 75 90–94. 10.1016/j.fm.2017.12.001 30056968
Torngren M. A., Darré M., Gunvig A., Bardenshtein A., (2018). Case studies of packaging and processing solutions to improve meat quality and safety. Meat Sci. 144 149–158. 10.1016/j.meatsci.2018.06.018 29980332
Vereecken K. M., Dens E. J., Van Impe J. F., (2000). Predictive modeling of mixed microbial populations in food products: evaluation of two-species models. J. Theor. Biol. 205 53–72. 10.1006/jtbi.2000.2046 10860700
Wang X. B., Wang C. N., Zhang Y. C., Liu T. T., Lv J. P., Shen X., et al. (2018). Effects of gamma radiation on microbial, psychichemical, and structural properties of whey protein model system. J. Dairy Sci. 101 4879–4890. 10.3168/jds.2017-14085 29573795
Woraprayote W., Malila Y., Sorapukdee S., Swetwiwathana A., Benjakul S., Visessanguan W., (2016). Bacteriocins from lactic acid bacteria and their applications in meat and meat products. Meat Sci. 120 118–132. 10.1016/j.meatsci.2016.04.004 27118166
Ye K., Wang H., Jiang Y., Xinglian X., Cao J., Zhou G., (2014). Development of interspecific competition models for the growth of Listeria monocytogenes and Lactobacillus on vacuum-packaged chilled pork by quantitative real-time PCR. Food Res. Int. 64 626–633. 10.1016/j.foodres.2014.07.017 30011697
Yoon S.-H., Ha S.-M., Kwon S., Lim J., Kim Y., Seo H., et al. (2017). Introducing EzBioCloud: a taxonomically unite database of 16 rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67 1613–1617. 10.1099/ijsem.0.001755 28005526
Zhao F., Zhou G., Ye K., Wang S., Xu X., Li C., (2015). Microbial changes in vacuum-packed chilled pork during storage. Meat Sci. 100 145–149. 10.1016/j.meatsci.2014.10.004 25460118
Zotta T., Parente E., Ianniello R. G., De Filippis F., Ricciardi A., (2019). Dynamics of bacterial communities and interaction networks in thawed fish fillets during chilled storage in air. Int. J. Food Microbiol. 293 102–113. 10.1016/j.ijfoodmicroio.2019.01.008 30677559