Exploration of the Isosteric Concept Applied to 1,2,4-Benzothiadiazine 1,1-Dioxides in the Discovery of Novel AMPA Receptor Positive Allosteric Modulators - 2025
Exploration of the Isosteric Concept Applied to 1,2,4-Benzothiadiazine 1,1-Dioxides in the Discovery of Novel AMPA Receptor Positive Allosteric Modulators
[en] The present study aims to highlight the impact on biological activity of the application of the isosteric concept to 1,2,4-benzothiadiazine 1,1-dioxides (BTDs) reported as AMPA receptor positive allosteric modulators (AMPAR PAMs). In a previous work, thiochroman 1,1-dioxides were designed as AMPAR PAMs by removing the two nitrogen atoms of the thiadiazine ring, a first pharmacomodulation process that led to encouraging results. In this study, another pharmacomodulation approach was employed to assess the impact of removing only one of the two nitrogen atoms of the thiadiazine ring providing two new series of candidates: 1,2-benzothiazine 1,1-dioxides and 1,4-benzothiazine 1,1-dioxides. Moreover, the isosteric concept between the carboxamide and the sulfonamide function was also explored leading to quinazolinone analogues of BTDs. The biological data revealed that 1,4-benzothiazine 1,1-dioxides appeared to be the most promising isosteres of BTDs since a significant AMPAR potentiation activity was observed with representative compounds. Among them, the chloro-substituted compound 25b demonstrated the highest activity, being the closest structural analogue of the well-known BTD AMPAR potentiator BPAM121. On the other hand, none of the 1,2-benzothiazine 1,1-dioxides and the quinazolinones studied were found to exert a significant AMPAR potentiation activity. In conclusion, activity on AMPARs can be retained with compounds where the nitrogen atoms at the 2-position (1,4-benzothiazine 1,1-dioxides) or at the 2,4-positions (thiochroman 1,1-dioxides) of BTDs was replaced by one or two carbon atoms. Further investigations are required to explore additional structural modifications that could improve biological activity.
Disciplines :
Pharmacy, pharmacology & toxicology Chemistry
Author, co-author :
Colson, Thomas ; Université de Liège - ULiège > Département de pharmacie > Chimie pharmaceutique
Lesenfants, Cindy ; Université de Liège - ULiège > Département de pharmacie > Chimie pharmaceutique
Goffin, Eric ; Université de Liège - ULiège > Département de pharmacie > Chimie pharmaceutique
Fraikin, Pierre ; Université de Liège - ULiège > Département de pharmacie > Chimie pharmaceutique
Schmitz, Astrid ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
De Tullio, Pascal ; Université de Liège - ULiège > Département de pharmacie
Danober, Laurence
Pirotte, Bernard ; Université de Liège - ULiège > Département de pharmacie
Francotte, Pierre ; Université de Liège - ULiège > Département de pharmacie > Chimie pharmaceutique
Language :
English
Title :
Exploration of the Isosteric Concept Applied to 1,2,4-Benzothiadiazine 1,1-Dioxides in the Discovery of Novel AMPA Receptor Positive Allosteric Modulators
Publication date :
2025
Journal title :
ACS Omega
eISSN :
2470-1343
Publisher :
American Chemical Society (ACS), Washington DC, United States - Washington
Hansen, K. B.; Wollmuth, L. P.; Bowie, D.; Furukawa, H.; Menniti, F. S.; Sobolevsky, A. I.; Swanson, G. T.; Swanger, S. A.; Greger, I. H.; Nakagawa, T.; McBain, C. J.; Jayaraman, V.; Low, C.-M.; Dell’Acqua, M. L.; Diamond, J. S.; Camp, C. R.; Perszyk, R. E.; Yuan, H.; Traynelis, S. F. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol. Rev. 2021, 73 (4), 1469–1658, 10.1124/pharmrev.120.000131
Sobolevsky, A. I.; Rosconi, M. P.; Gouaux, E. X-Ray Structure, Symmetry and Mechanism of an AMPA-Subtype Glutamate Receptor. Nature 2009, 462 (7274), 745–756, 10.1038/nature08624
Pirotte, B.; Francotte, P.; Goffin, E.; de Tullio, P. AMPA Receptor Positive Allosteric Modulators: A Patent Review. Expert Opin. Ther. Pat. 2013, 23 (5), 615–628, 10.1517/13543776.2013.770840
Traynelis, S. F.; Wollmuth, L. P.; McBain, C. J.; Menniti, F. S.; Vance, K. M.; Ogden, K. K.; Hansen, K. B.; Yuan, H.; Myers, S. J.; Dingledine, R. Glutamate Receptor Ion Channels: Structure, Regulation, and Function. Pharmacol. Rev. 2010, 62 (3), 405–496, 10.1124/pr.109.002451
Gouaux, E. Structure and Function of AMPA Receptors: Structure and Function of AMPA Receptors. J. Physiol. 2004, 554 (2), 249–253, 10.1113/jphysiol.2003.054320
Collingridge, G. L.; Isaac, J. T. R.; Wang, Y. T. Receptor Trafficking and Synaptic Plasticity. Nat. Rev. Neurosci. 2004, 5 (12), 952–962, 10.1038/nrn1556
Crovato, T. E.; Egebjerg, J. ASF/SF2 and SC35 Regulate the Glutamate Receptor Subunit 2 Alternative Flip/Flop Splicing. FEBS Lett. 2005, 579 (19), 4138–4144, 10.1016/j.febslet.2005.06.044
Sommer, B.; Keinänen, K.; Verdoorn, T. A.; Wisden, W.; Burnashev, N.; Herb, A.; Kohler, M.; Takagi, T.; Sakmann, B.; Seeburg, P. H. Flip and Flop: A Cell-Specific Functional Switch in Glutamate-Operated Channels of the CNS. Science 1990, 249 (4976), 1580–1585, 10.1126/science.1699275
Pei, W.; Huang, Z.; Wang, C.; Han, Y.; Park, J. S.; Niu, L. Flip and Flop: A Molecular Determinant for AMPA Receptor Channel Opening. Biochemistry 2009, 48 (17), 3767–3777, 10.1021/bi8015907
Lau, A.; Tymianski, M. Glutamate Receptors, Neurotoxicity and Neurodegeneration. Pflüg. Arch. - Eur. J. Physiol. 2010, 460 (2), 525–542, 10.1007/s00424-010-0809-1
Gautam, D.; Naik, U. P.; Naik, M. U.; Yadav, S. K.; Chaurasia, R. N.; Dash, D. Glutamate Receptor Dysregulation and Platelet Glutamate Dynamics in Alzheimer’s and Parkinson’s Diseases: Insights into Current Medications. Biomolecules 2023, 13 (11), 1609, 10.3390/biom13111609
Madden, D. R. The Structure and Function of Glutamate Receptor Ion Channels. Nat. Rev. Neurosci. 2002, 3 (2), 91–101, 10.1038/nrn725
Fu, H.; Chen, Z.; Josephson, L.; Li, Z.; Liang, S. H. Positron Emission Tomography (PET) Ligand Development for Ionotropic Glutamate Receptors: Challenges and Opportunities for Radiotracer Targeting N -Methyl- d -Aspartate (NMDA), α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid (AMPA), and Kainate Receptors. Miniperspective. J. Med. Chem. 2019, 62 (2), 403–419, 10.1021/acs.jmedchem.8b00714
Zarate, C. A.; Manji, H. K. The Role of AMPA Receptor Modulation in the Treatment of Neuropsychiatric Diseases. Exp. Neurol. 2008, 211 (1), 7–10, 10.1016/j.expneurol.2008.01.011
Golubeva, E. A.; Lavrov, M. I.; Radchenko, E. V.; Palyulin, V. A. Diversity of AMPA Receptor Ligands: Chemotypes, Binding Modes, Mechanisms of Action, and Therapeutic Effects. Biomolecules 2023, 13 (1), 56, 10.3390/biom13010056
Francotte, P.; Goffin, E.; Fraikin, P.; Graindorge, E.; Lestage, P.; Danober, L.; Challal, S.; Rogez, N.; Nosjean, O.; Caignard, D.-H.; Pirotte, B.; De Tullio, P. Development of Thiophenic Analogues of Benzothiadiazine Dioxides as New Powerful Potentiators of 2-Amino-3-(3-Hydroxy-5-Methylisoxazol-4-Yl)Propionic Acid (AMPA) Receptors. J. Med. Chem. 2013, 56 (20), 7838–7850, 10.1021/jm400676g
Francotte, P.; Bay, Y.; Goffin, E.; Colson, T.; Lesenfants, C.; Dorosz, J.; Laulumaa, S.; Fraikin, P.; De Tullio, P.; Beaufour, C.; Botez, I.; Pickering, D. S.; Frydenvang, K.; Danober, L.; Kristensen, A. S.; Kastrup, J. S.; Pirotte, B. Exploring Thienothiadiazine Dioxides as Isosteric Analogues of Benzo- and Pyridothiadiazine Dioxides in the Search of New AMPA and Kainate Receptor Positive Allosteric Modulators. Eur. J. Med. Chem. 2024, 264, 116036, 10.1016/j.ejmech.2023.116036
Pirotte, B.; Podona, T.; Diouf, O.; De Tullio, P.; Lebrun, P.; Dupont, L.; Somers, F.; Delarge, J.; Morain, P.; Lestage, P.; Lepagnol, J.; Spedding, M. 4 H −1,2,4-Pyridothiadiazine 1,1-Dioxides and 2,3-Dihydro-4 H −1 2,4-Pyridothiadiazine 1,1-Dioxides Chemically Related to Diazoxide and Cyclothiazide as Powerful Positive Allosteric Modulators of (R/S)-2-Amino-3-(3-Hydroxy-5-Methylisoxazol-4-Yl)Propionic Acid Receptors: Design, Synthesis, Pharmacology, and Structure–Activity Relationships. J. Med. Chem. 1998, 41 (16), 2946–2959, 10.1021/jm970694v
Francotte, P.; Tullio, P. D.; Podona, T.; Diouf, O.; Fraikin, P.; Lestage, P.; Danober, L.; Thomas, J.-Y.; Caignard, D.-H.; Pirotte, B. Synthesis and Pharmacological Evaluation of a Second Generation of Pyridothiadiazine 1,1-Dioxides Acting as AMPA Potentiators. Bioorg. Med. Chem. 2008, 16 (23), 9948–9956, 10.1016/j.bmc.2008.10.036
Etsè, K. S.; Dorosz, J.; McLain Christensen, K.; Thomas, J.-Y.; Botez Pop, I.; Goffin, E.; Colson, T.; Lestage, P.; Danober, L.; Pirotte, B.; Kastrup, J. S.; Francotte, P. Development of Thiochroman Dioxide Analogues of Benzothiadiazine Dioxides as New Positive Allosteric Modulators of α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid (AMPA) Receptors. ACS Chem. Neurosci. 2021, 12 (14), 2679–2692, 10.1021/acschemneuro.1c00255
Wassermann, A. M.; Bajorath, J. Large-Scale Exploration of Bioisosteric Replacements on the Basis of Matched Molecular Pairs. Future Med. Chem. 2011, 3 (4), 425–436, 10.4155/fmc.10.293
Kumari, S.; Carmona, A. V.; Tiwari, A. K.; Trippier, P. C. Amide Bond Bioisosteres: Strategies, Synthesis, and Successes. J. Med. Chem. 2020, 63 (21), 12290–12358, 10.1021/acs.jmedchem.0c00530
Baldazzi, C.; Barbanti, M.; Basaglia, R.; Benelli, A.; Alfio, B.; Pianib, S. A New Series of 6-Chloro-2,3-Dihydro-4(1H)-Quinazolinone Derivatives as Antiemetic and Gastrointestinal Motility Enhancing Agents. Arzneimittelforschung 1996, 46, 911
Dandapani, S.; Curran, D. P. Separation-Friendly Mitsunobu Reactions: A Microcosm of Recent Developments in Separation Strategies. Chem.─Eur. J. 2004, 10 (13), 3130–3138, 10.1002/chem.200400363
Zinnes, H.; Comes, R. A.; Shavel, J., Jr 1,2-Benzothiazines. III. The Preparation of 2H-1,2-Benzothiazin-4(3H)-One 1,1-Dioxide by the Acid-Catalyzed Deacetylation of β-Diketone. J. Org. Chem. 1966, 31, 162–165, 10.1021/jo01339a034
Francotte, P.; Goffin, E.; Fraikin, P.; Lestage, P.; Van Heugen, J.-C.; Gillotin, F.; Danober, L.; Thomas, J.-Y.; Chiap, P.; Caignard, D.-H.; Pirotte, B.; De Tullio, P. New Fluorinated 1,2,4-Benzothiadiazine 1,1-Dioxides: Discovery of an Orally Active Cognitive Enhancer Acting through Potentiation of the 2-Amino-3-(3-Hydroxy-5-Methylisoxazol-4-Yl)Propionic Acid Receptors. J. Med. Chem. 2010, 53 (4), 1700–1711, 10.1021/jm901495t
Francotte, P.; De Tullio, P.; Goffin, E.; Dintilhac, G.; Graindorge, E.; Fraikin, P.; Lestage, P.; Danober, L.; Thomas, J.-Y.; Caignard, D.-H.; Pirotte, B. Design, Synthesis, and Pharmacology of Novel 7-Substituted 3,4-Dihydro-2 H −1,2,4-Benzothiadiazine 1,1-Dioxides as Positive Allosteric Modulators of AMPA Receptors. J. Med. Chem. 2007, 50 (13), 3153–3157, 10.1021/jm070120i
Naik, N. R.; Amin, A. F.; Patel, S. R. Synthesis and Spectral Study of 1-Methyl-2(R)-1,4-Dihydro-4-Oxoquinazoline Derivatives. J. Indian Chem. Soc. 1979, 56 (7), 708–711