S.W. Kim et al. Meeting global feed protein demand: Challenge, opportunity, and strategy Annu. Rev. Anim. Biosci. 2019 7 221 243 1:CAS:528:DC%2BC1cXitFGnsrjM 10.1146/annurev-animal-030117-014838 30418803
Van Huis, A. et al. EDIBLE INSECTS Future Prospects Fo Food and Feed Security. vol. 171 (2013).
Caparros Megido, R. et al. A worldwide overview of the status and prospects of edible insect production. Entomol. Gen. 44, (2024).
Rehman, K. ur et al. Black soldier fly, Hermetia illucens as a potential innovative and environmentally friendly tool for organic waste management: A mini-review. Waste Manag. Res.41, 81–97 (2023).
Scala, A. et al. Rearing substrate impacts growth and macronutrient composition of Hermetia illucens (L.) (Diptera: Stratiomyidae) larvae produced at an industrial scale. Scie. Rep. 10, 19448 (2020).
Shu, M. K. et al. Antibacterial properties of oil extracts of black soldier fly larvae reared on bread waste. Anim. Prod. Sci.64, (2024).
E. Schmitt W. de Vries Potential benefits of using Hermetia illucens frass as a soil amendment on food production and for environmental impact reduction Curr. Opin. Green Sustain. Chem. 2020 25 10.1016/j.cogsc.2020.03.005
Franco, A. et al. Lipids from Hermetia illucens, an Innovative and Sustainable Source. Sustainability13, (2021).
A. Van Huis Insects as food and feed, a new emerging agricultural sector: A review J. Insects Food Feed 2020 6 27 44 10.3920/JIFF2019.0017
Kaczor, M., Bulak, P., Proc-Pietrycha, K., Kirichenko-Babko, M. & Bieganowski, A. The variety of applications of Hermetia illucens in industrial and agricultural areas—review. Biology 12, (2023).
Hoc, B., Noël, G., Carpentier, J., Francis, F. & Caparros Megido, R. Optimization of black soldier fly (Hermetia illucens) artificial reproduction. PLoS ONE14, (2019).
Arrese, E. L. & Soulages, J. L. Insect Fat Body: Energy, Metabolism, and Regulation. vol. 55 (2010).
M.M. Seyedalmoosavi M. Mielenz T. Veldkamp G. Daş C.C. Metges Growth efficiency, intestinal biology, and nutrient utilization and requirements of black soldier fly (Hermetia illucens) larvae compared to monogastric livestock species: a review J. Anim. Sci. Biotechnol. 2022 13 31 1:CAS:528:DC%2BB38XhsFagtLvI 10.1186/s40104-022-00682-7 35509031 9069764
L. Pinotti M. Ottoboni Substrate as insect feed for bio-mass production J. Insects Food Feed 2021 7 585 596 10.3920/JIFF2020.0110
Holtof, M., Lenaerts, C., Cullen, D. & Vanden Broeck, J. Extracellular nutrient digestion and absorption in the insect gut. Cell Tissue Res.377, 397–414 (2019).
I. Miguel-Aliaga H. Jasper B. Lemaitre Anatomy and physiology of the digestive tract of Drosophila melanogaster Genetics 2018 210 357 396 1:CAS:528:DC%2BC1MXjsVyitL4%3D 10.1534/genetics.118.300224 30287514 6216580
Rockstein, M. Biochemistry of Insects. (New York, 1978).
S. Bellezza Oddon I. Biasato A. Resconi L. Gasco Determination of lipid requirements in black soldier fly through semi-purified diets Sci. Rep. 2022 12 10922 2022NatSR.1210922B 1:CAS:528:DC%2BB38Xhslajs7bI 10.1038/s41598-022-14290-y 35764680 9239991
Hoc, B. et al. About lipid metabolism in Hermetia illucens (L. 1758): on the origin of fatty acids in prepupae. Sci. Rep.10, (2020).
T. Spranghers et al. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates J. Sci. Food Agric. 2017 97 2594 2600 1:CAS:528:DC%2BC28XhvVCitrvL 10.1002/jsfa.8081 27734508
Gougbedji, A., Detilleux, J., Lalèyè, P. A., Francis, F. & Caparros Megido, R. Can insect meal replace fishmeal? A meta-analysis of the effects of black soldier fly on fish growth performances and nutritional values. Animals12, (2022).
N.S. Liland et al. Modulation of nutrient composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media PLOS ONE 2017 12 10.1371/journal.pone.0183188 28837591 5570497
S. St-Hilaire et al. Fish offal recycling by the black soldier fly produces a foodstuff high in omega-3 fatty acids J. World Aquac. Soc. 2007 38 309 313 10.1111/j.1749-7345.2007.00101.x
A. Franco et al. Antimicrobial activity of lipids extracted from Hermetia illucens reared on different substrates Appl. Microbiol. Biotechnol. 2024 108 167 1:CAS:528:DC%2BB2cXhvFaksbc%3D 10.1007/s00253-024-13005-9 38261012 10806025
M. Meneguz et al. Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae J. Sci. Food Agric. 2018 98 5776 5784 1:CAS:528:DC%2BC1cXhtF2lu7jL 10.1002/jsfa.9127 29752718
Danieli, P. P., Lussiana, C., Gasco, L., Amici, A. & Ronchi, B. The effects of diet formulation on the yield, proximate composition, and fatty acid profile of the black soldier fly (Hermetia illucens L.) prepupae intended for animal feed. Animals9, (2019).
Liu, Y. et al. Chronological and carbohydrate-dependent transformation of fatty acids in the larvae of black soldier fly following food waste treatment. Molecules 28, (2023).
H. Meyer O. Vitavska H. Wieczorek Identification of an animal sucrose transporter J. Cell Sci. 2011 124 1984 1991 1:CAS:528:DC%2BC3MXpslylt7k%3D 10.1242/jcs.082024 21586609
B. Georgescu D. Struti T. Papuc V. Cighi A. Boaru Effect of the energy content of diets on the development and quality of the fat reserves of larvae and reproduction of adults of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae) EJE 2021 118 297 306
W. Li et al. Simultaneous utilization of glucose and xylose for lipid accumulation in black soldier fly Biotechnol. Biofuels 2015 8 117 10.1186/s13068-015-0306-z 26273321 4535370
W.R. Terra C. Ferreira Insect digestive enzymes: properties, compartmentalization and function Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1994 109 1 62 10.1016/0305-0491(94)90141-4
W. Kim et al. Biochemical characterization of digestive enzymes in the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae) J. Asia-Pac Entomol. 2011 14 11 14 1:CAS:528:DC%2BC3MXjs12rsbs%3D 10.1016/j.aspen.2010.11.003
R. Galun G. Fraenkel Physiological effects of carbohydrates in the nutrition of a mosquito, Aedes aegypti and two flies, Sarcophaga bullata and Musca domestica J. Cell Comp. Physiol. 1957 50 1 23 1:CAS:528:DyaG1cXjs1yquw%3D%3D 10.1002/jcp.1030500102 13491649
I. Ishaaya J. Meisner Physiological effect of sugars on various digestive enzymes of Spodoptera littoralis larvae J. Comp. Physiol. 1973 86 117 124 1:CAS:528:DyaE2cXks1WhsLw%3D 10.1007/BF00702532
T. Ito Effect of sugars on feeding of larvae of the silkworm, Bombyx mori J. Insect Physiol. 1960 5 95 107 1:CAS:528:DyaF3MXksVOitg%3D%3D 10.1016/0022-1910(60)90035-4
R.L. Burton K.J. Starks J.R. Sauer Carbohydrate digestion by the larval midgut of Heliothis zea Ann. Entomol. Soc. Am. 1977 70 477 480 1:CAS:528:DyaE2sXltFCqtL4%3D 10.1093/aesa/70.4.477
A. Giannetto et al. Hermetia illucens (Diptera: Stratiomydae) larvae and prepupae: Biomass production, fatty acid profile and expression of key genes involved in lipid metabolism J. Biotechnol. 2020 307 44 54 1:CAS:528:DC%2BB3cXlsVSntA%3D%3D 10.1016/j.jbiotec.2019.10.015 31678205
K.B. Barragan-Fonseca G. Gort M. Dicke J.J.A. van Loon Effects of dietary protein and carbohydrate on life-history traits and body protein and fat contents of the black soldier fly Hermetia illucens Physiological Entomology 2019 44 148 159 1:CAS:528:DC%2BC1MXpsVShs78%3D 10.1111/phen.12285
K.B. Barragan-Fonseca M. Dicke J.J.A. van Loon Influence of larval density and dietary nutrient concentration on performance, body protein, and fat contents of black soldier fly larvae (Hermetia illucens) Entomol. Exp. Appl. 2018 166 761 770 1:CAS:528:DC%2BC1cXhvF2mtLjM 10.1111/eea.12716 30449896 6221057
K.B. Barragan-Fonseca G. Gort M. Dicke J.J.A. Van Loon Nutritional plasticity of the black soldier fly (Hermetia illucens) in response to artificial diets varying in protein and carbohydrate concentrations J.Insects Food Feed 2021 7 51 61 10.3920/JIFF2020.0034
Z. Cohn T. Latty A. Abbas Understanding dietary carbohydrates in black soldier fly larvae treatment of organic waste in the circular economy Waste Manag. 2022 137 9 19 1:CAS:528:DC%2BB3MXisVShsb7J 10.1016/j.wasman.2021.10.013 34700286
R.A. Nugroho et al. Fermented palm kernel waste with different sugars as substrate for black soldier fly larvae Global J. Environ. Sci. Manag. 2024 10 503 516 1:CAS:528:DC%2BB2cXhsVKhsrfL
R.A. Nugroho et al. Nutritive value, material reduction, biomass conversion rate, and survival of black solider fly larvae reared on palm kernel meal supplemented with fish pellets and fructose Int. J. Trop. Insect Sci. 2023 43 1243 1254 10.1007/s42690-023-01032-4
E. Caplice G.F. Fitzgerald Food fermentations: role of microorganisms in food production and preservation Int. J. Food Microbiol. 1999 50 131 149 1:CAS:528:DyaK1MXmsVarsLo%3D 10.1016/S0168-1605(99)00082-3 10488849
M.S. Moore et al. Ethanol Intoxication in Drosophila: Genetic and pharmacological evidence for regulation by the cAMP signaling pathway Cell 1998 93 997 1007 1:CAS:528:DyaK1cXjvFKqsLk%3D 10.1016/S0092-8674(00)81205-2 9635429
M. Krzyżowski J. Francikowski B. Baran A. Babczyńska The short-chain fatty acids as potential protective agents against Callosobruchus maculatus infestation J. Stored Products Res. 2020 86 10.1016/j.jspr.2020.101570
G. Kim J.H. Huang J.G. McMullen P.D. Newell A.E. Douglas Physiological responses of insects to microbial fermentation products: Insights from the interactions between Drosophila and acetic acid J. Insect Physiol. 2018 106 13 19 1:CAS:528:DC%2BC2sXosFWjtLc%3D 10.1016/j.jinsphys.2017.05.005 28522417
A.J. Barron et al. Microbiome-derived acidity protects against microbial invasion in Drosophila Cell Reports 2024 43 1:CAS:528:DC%2BB2cXnslOqt74%3D 10.1016/j.celrep.2024.114087 38583152
A.E. Douglas Multiorganismal insects: Diversity and function of resident microorganisms Annu. Rev. Entomol. 2015 60 17 34 1:CAS:528:DC%2BC2MXjsVCrtb0%3D 10.1146/annurev-ento-010814-020822 25341109
M. Kasubuchi S. Hasegawa T. Hiramatsu A. Ichimura I. Kimura Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation Nutrients 2015 7 2839 2849 1:CAS:528:DC%2BC2MXotVyqu7o%3D 10.3390/nu7042839 25875123 4425176
Carpentier, J. et al. Microorganism contribution to mass-reared edible insects: Opportunities and challenges. Insects15, (2024).
F. Xiang Q. Zhang X. Xu Z. Zhang Black soldier fly larvae recruit functional microbiota into the intestines and residues to promote lignocellulosic degradation in domestic biodegradable waste Environ. Pollut. 2024 340 1:CAS:528:DC%2BB3sXit1WqurvJ 10.1016/j.envpol.2023.122676 37839685
Caltzontzin-Rabell, V., Escobar-Ortiz, A., Gutiérrez-Antonio, C., Feregrino-Pérez, A. A. & García-Trejo, J. F. Revaluation process of cheese whey through the cultivation of black soldier fly larvae (Hermetia illucens). Eng. Rep. 6, e12853 (2024).
J. Folch M. Lees G.H.S. Stanley A simple method for the isolation and purification of total lipides from animal tissues J. Biol. Chem. 1957 226 497 509 1:STN:280:DyaG2s%2FnsFCjtw%3D%3D 10.1016/S0021-9258(18)64849-5 13428781
D. Ferrara et al. Composition and nutritional values of fatty acids in marine organisms by one-step microwave-assisted extraction/derivatization and comprehensive two-dimensional gas chromatography -flame ionization detector J. Chromatogr. B 2024 1236 1:CAS:528:DC%2BB2cXlsFKktL4%3D 10.1016/j.jchromb.2024.124074
R Core Team. R: A Language and Environment for Statistical Computing. Foundation for Statistical Computing (2024).
D. Bates M. Maechler B. Bolker S. Walker Fitting linear mixed-effects models using lme4 J. Stat. Softw. 2015 67 1 1 48 10.18637/jss.v067.i01
Oksanen J, et al. _vegan: Community Ecology Package_. R package version 2.6–4. (2022).
Lenth, R. _emmeans: Estimated Marginal Means, aka Least-Squares Means_. R package version 1.10.1. (2024).
S. Le J. Josse F. Husson FactoMineR: An R package for multivariate analysis J. Stat. Softw. 2008 25 1 1 18 10.18637/jss.v025.i01
Lider, D., Shevchenko, A. & Lytvyn, M. Grammarly Editor (v1.2.104.1487). (Grammarly, Inc, San Francisco).