Scientific conference in universities or research centers (Scientific conferences in universities or research centers)
Cracking the genetic code with neural networks (poster)
Joiret, Marc; Leclercq, Marine; Lambrechts, Gaspard et al.
2023
Dataset
 

Files


Full Text
PosterGIGAdayJOIRET2023.pdf
Author postprint (1.59 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Artificial Intellignece; Deep learning; genetic code deciphering; Natural language processing; codon bias; data efficiency; embeddings; cross entropy loss; neural networks; multi-layer perceptron
Abstract :
[en] The genetic code is textbook scientific knowledge that was soundly established without resorting to Artificial Intelligence (AI). The goal of our study was to check whether a neural network could re-discover, on its own, the mapping links between codons and amino acids and build the complete deciphering dictionary upon presentation of transcripts proteins data training pairs. We compared different Deep Learning neural network architectures and estimated quantitatively the size of the required human transcriptomic training set to achieve the best possible accuracy in the codon-to-amino-acid mapping. We also investigated the effect of a codon embedding layer assessing the semantic similarity between codons on the rate of increase of the training accuracy. We further investigated the benefit of quantifying and using the unbalanced representations of amino acids within real human proteins for a faster deciphering of rare amino acids codons. Deep neural networks require huge amount of data to train them. Deciphering the genetic code by a neural network is no exception. A test accuracy of 100% and the unequivocal deciphering of rare codons such as the tryptophan codon or the stop codons require a training dataset of the order of 4–22 millions cumulated pairs of codons with their associated amino acids presented to the neural network over around 7–40 training epochs, depending on the architecture and settings. We confirm that the wide generic capacities and modularity of deep neural networks allow them to be customized easily to learn the deciphering task of the genetic code efficiently.
Research Center/Unit :
GIGA In silico medecine-Biomechanics Research Unit
Disciplines :
Computer science
Biochemistry, biophysics & molecular biology
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Joiret, Marc  ;  Université de Liège - ULiège > GIGA
Leclercq, Marine  ;  Université de Liège - ULiège > GIGA > GIGA Stem Cells - Cancer Signaling
Lambrechts, Gaspard ;  Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Rapino, Francesca  ;  Université de Liège - ULiège > Département de pharmacie
Close, Pierre  ;  Université de Liège - ULiège > Département de pharmacie
Louppe, Gilles  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Big Data
Geris, Liesbet  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Génie biomécanique
Language :
English
Title :
Cracking the genetic code with neural networks (poster)
Publication date :
2023
Number of pages :
1
Event name :
Neural networks: real versus man-made
Event organizer :
GIGA Day September 4th, 2023
Event place :
Liège, Belgium
Event date :
September 4th, 2023
Audience :
International
Name of the research project :
ERC grant agreement 742418 (INSITE)
Available on ORBi :
since 22 September 2023

Statistics


Number of views
56 (6 by ULiège)
Number of downloads
30 (2 by ULiège)

Bibliography


Similar publications



Contact ORBi