Louppe Gilles

Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data

Montefiore Institute

See author's contact details
ORCID
0000-0002-2082-3106
Main Referenced Co-authors
Cranmer, Kyle (29)
Geurts, Pierre  (15)
Wehenkel, Antoine  (12)
Brehmer, Johann (10)
Hermans, Joeri  (9)
Main Referenced Keywords
Statistics - Machine Learning (20); machine learning (18); Computer Science - Learning (17); Statistics and Probability (10); Physics - Data Analysis (9);
Main Referenced Unit & Research Centers
Montefiore Institute - Montefiore Institute of Electrical Engineering and Computer Science - ULiège [BE] (6)
STAR - Space sciences, Technologies and Astrophysics Research - ULiège [BE] (3)
Giga-Systems Biology and Chemical Biology - ULiège [BE] (2)
CERN (1)
EVS Broadcast Equipment (1)
Main Referenced Disciplines
Computer science (188)
Physics (48)
Mathematics (24)
Space science, astronomy & astrophysics (14)
Electrical & electronics engineering (12)

Publications (total 217)

The most downloaded
12794 downloads
Prettenhofer, P., & Louppe, G. (23 February 2014). Gradient Boosted Regression Trees in Scikit-Learn [Paper presentation]. PyData 2014, London, United Kingdom. https://hdl.handle.net/2268/163521

The most cited

757 citations (Scopus®)

Louppe, G., Wehenkel, L., Sutera, A., & Geurts, P. (2013). Understanding variable importances in forests of randomized trees. In Advances in Neural Information Processing Systems 26. https://hdl.handle.net/2268/155642

Ernst, D., Louppe, G., & Pirenne, L. (2024). LLMs: generating innovative and effective collaborations in AI [Paper presentation]. NRB AI &c Data Xperience.

Pirlet, M., Bolland, A., Louppe, G., & Ernst, D. (06 September 2024). Costs Estimation in Unit Commitment Problems using Simulation-Based Inference [Poster presentation]. NeurIPS workshop: Data-driven and Differentiable Simulations, Surrogates, and Solvers, Vancouver, Canada.
Peer reviewed

Marlier, N., Bruls, O., & Louppe, G. (2024). Grasping under Uncertainties: Sequential Neural Ratio Estimation for 6-DoF Robotic Grasping. IEEE Robotics and Automation Letters, 1-8. doi:10.1109/lra.2024.3416773
Peer Reviewed verified by ORBi

Louppe, G. (29 May 2024). Simulation-based inference for the physical sciences [Paper presentation]. Grenoble Artificial Intelligence for Physical Sciences, Grenoble, France.

Rozet, F., Andry, G., Lanusse, F., & Louppe, G. (2024). Learning Diffusion Priors from Observations by Expectation Maximization. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/319891.

Louppe, G. (15 May 2024). The frontiers of simulation-based inference (Part 1 of 2) [Paper presentation]. PHYSTAT-SBI 2024 - Simulation-based inference in fundamental physics, Munich, Germany.

Purnode, F., Henrotte, F., Louppe, G., & Geuzaine, C. (02 April 2024). Neural network-based simulation of fields and losses in electrical machines with ferromagnetic laminated cores. International Journal of Numerical Modelling, 37 (2). doi:10.1002/jnm.3226
Peer Reviewed verified by ORBi

Louppe, G. (2024). Intelligence artificielle: Quand les algorithmes rencontrent la science [Paper presentation]. Conférence-débat, Liège, Belgium.

Louppe, G. (2024). Intelligence artificielle: Quand les algorithmes rencontrent la science [Paper presentation]. Conférence-débat, Waremme, Belgium.

Louppe, G. (02 February 2024). Artificial intelligence: When algorithms meet medicine [Paper presentation]. Belgian Hematology Society, 39th General Annual Meeting, La Hulpe, Brussels, Belgium.

Pirenne, L.* , Mokeddem, S.* , Ernst, D., & Louppe, G. (2024). Exploration of Closed-Domain Question Answering Explainability Methods With a Sentence-Level Rationale Dataset. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/322654.
* These authors have contributed equally to this work.

Rochman Sharabi, O., & Louppe, G. (15 December 2023). Trick or treat? Evaluating stability strategies in graph network-based simulators [Poster presentation]. Machine Learning and the Physical Sciences, NeurIPS 2023.
Peer reviewed

Falkiewicz, M., Takeishi, N., Shekhzadeh, I., Wehenkel, A., Delaunoy, A., Louppe, G., & Kalousis, A. (2023). Calibrating Neural Simulation-Based Inference with Differentiable Coverage Probability. Advances in Neural Information Processing Systems. doi:10.48550/arXiv.2310.13402
Peer Reviewed verified by ORBi

Louppe, G. (28 November 2023). An introduction to simulation-based inference [Paper presentation]. Artificial Intelligence and the Uncertainty challenge in Fundamental Physics, Paris, France.

Louppe, G. (2023). Intelligence artificielle: Quand les algorithmes rencontrent la science [Paper presentation]. Conférence-débat, Jupille, Belgium.

Mangeleer, V., & Louppe, G. (01 November 2023). Robust Ocean Subgrid-Scale Parameterizations Using Fourier Neural Operators [Poster presentation]. Machine Learning and the Physical Sciences, NeurIPS 2023, New Orleans, United States.
Peer reviewed

Schneider, A. D., Mollière, P., Louppe, G., Carone, L., Gråe Jørgensen, U., Decin, L., & Helling, C. (2023). Harnessing machine learning for accurate treatment of overlapping opacity species in GCMs. Astronomy and Astrophysics. doi:10.1051/0004-6361/202348221
Peer Reviewed verified by ORBi

Bolland, A., Louppe, G., & Ernst, D. (2023). Policy Gradient Algorithms Implicitly Optimize by Continuation. Transactions on Machine Learning Research.
Peer Reviewed verified by ORBi

Vandeghen, R., Louppe, G., & Van Droogenbroeck, M. (October 2023). Adaptive Self-Training for Object Detection [Poster presentation]. IEEE/CVF International Conference on Computer Vision Workshops (ICCV Workshops), Paris, France. doi:10.1109/ICCVW60793.2023.00098
Peer reviewed

Louppe, G. (11 September 2023). The Elegant Simplicity of Deep Learning [Paper presentation]. Agents of Intelligence: How AI is changing the way we work, teach and learn, Belgium.

Purnode, F., Henrotte, F., Louppe, G., & Geuzaine, C. (04 September 2023). Fast and accurate Neural-Network-based Ferromagnetic Laminated Stack Model for Electrical Machine Simulations in Periodic Regime [Paper presentation]. COMPUMAG 2023, Kyoto, Japan.
Peer reviewed

Purnode, F., Henrotte, F., Louppe, G., & Geuzaine, C. (30 August 2023). Neural-Network-Based Identification of Material Law Parameters for Fast and Accurate Simulations of Electrical Machines in Periodic Regime [Poster presentation]. EMF 2023, Marseille, France.

Louppe, G. (16 August 2023). An introduction to simulation-based inference [Paper presentation]. 51st SLAC Summer Institute (SSI 2023), Stanford, United States.

Louppe, G. (15 August 2023). Deep generative models, a latent variable model perspective [Paper presentation]. 51st SLAC Summer Institute (SSI 2023), Stanford, United States.

Purnode, F., Henrotte, F., Louppe, G., & Geuzaine, C. (12 July 2023). Neural-Network-Based Identification of Material Law Parameters for Fast and Accurate Simulations of Electrical Machines in Periodic Regime [Paper presentation]. EMF 2023, Marseille, France.
Peer reviewed

Bolland, A., Louppe, G., & Ernst, D. (19 June 2023). Policy Gradient Algorithms Implicitly Optimize by Continuation [Poster presentation]. ICML Workshop on New Frontiers in Learning, Control, and Dynamical Systems, Honolulu, United States - Hawaii.
Peer reviewed

Marlier, N., Gustin, J., Brüls, O., & Louppe, G. (02 June 2023). Implicit representation priors meet Riemannian geometry for Bayesian robotic grasping [Paper presentation]. ICRA 2023, Londres, United Kingdom.
Peer reviewed

Louppe, G. (30 May 2023). Deep Learning for Simulation-based Inference [Paper presentation]. EDT STAT-ACTU PhD day, Namur, Belgium.

Purnode, F., Henrotte, F., Louppe, G., & Geuzaine, C. (26 May 2023). Fast and accurate Neural-Network-based Ferromagnetic Laminated Stack Model for Electrical Machine Simulations in Periodic Regime [Paper presentation]. COMPUMAG 2023, Kyoto, Japan.

Théate, T., Wehenkel, A., Bolland, A., Louppe, G., & Ernst, D. (14 May 2023). Distributional Reinforcement Learning with Unconstrained Monotonic Neural Networks. Neurocomputing, 534, 199-219. doi:10.1016/j.neucom.2023.02.049
Peer Reviewed verified by ORBi

Stillman, N. R., Henkes, S., Mayor, R., & Louppe, G. (May 2023). Graph-informed simulation-based inference for models of active matter [Poster presentation]. ML4Materials workshop @ ICLR 2023.
Peer reviewed

Delaunoy, A., Kurt Miller, B., Forré, P., Weniger, C., & Louppe, G. (21 April 2023). Balancing Simulation-based Inference for Conservative Posteriors [Paper presentation]. 5th Symposium on Advances in Approximate Bayesian Inference, Honolulu, United States.
Peer reviewed

Louppe, G. (18 April 2023). Reliable Simulation-Based Inference with Balanced Neural Ratio Estimation [Paper presentation]. NASC seminar, Pepperdine University, United States.

Joiret, M., Leclercq, M., Lambrechts, G., Rapino, F., Close, P., Louppe, G., & Geris, L. (06 April 2023). Cracking the genetic code with neural networks. Frontiers in Artificial Intelligence, 6. doi:10.3389/frai.2023.1128153
Peer Reviewed verified by ORBi

Vasist, M., Rozet, F., Absil, O., Mollière, P., Nasedkin, E., & Louppe, G. (April 2023). Neural posterior estimation for exoplanetary atmospheric retrieval. Astronomy and Astrophysics, 672, 147. doi:10.1051/0004-6361/202245263
Peer Reviewed verified by ORBi

Louppe, G. (31 March 2023). Simulation-based inference and its applications in neuroscience [Paper presentation]. Networks of Spiking Neurons, Paris, France.

Messina, A., Schyns, M., Dozo, B.-O., Denoël, V., Van Hulle, R., Etienne, A.-M., Delroisse, S., Bruyère, O., D'Orio, V., Fontaine, S., Guillaume, M., Lange, A.-C., Louppe, G., Michel, F., Nyssen, A.-S., Bureau, F., Haubruge, E., Donneau, A.-F., Gillet, L., & Saegerman, C. (2023). Developing a video game as an awareness and research tool based on SARS-CoV-2 epidemiological dynamics and motivational perspectives. Transboundary and Emerging Diseases. doi:10.1155/2023/8205408
Peer Reviewed verified by ORBi

Louppe, G. (08 February 2023). Reliable Simulation-Based Inference with Balanced Neural Ratio Estimation [Paper presentation]. PhyStat Seminar, Genève, Switzerland.

Wehenkel, A., Behrmann, J., Hsu, H., Sapiro, G., Louppe, G., & Jacobsen, J.-H. (2023). Robust Hybrid Learning With Expert Augmentation. Transactions on Machine Learning Research.
Peer Reviewed verified by ORBi

Louppe, G. (12 January 2023). Reliable Simulation-based Inference in the Physical Sciences [Paper presentation]. Particle Physics Colloquium, Karlsruhe, Germany.

Rozet, F., & Louppe, G. (2023). Score-based Data Assimilation. Advances in Neural Information Processing Systems.
Peer Reviewed verified by ORBi

Joiret, M., Leclercq, M., Lambrechts, G., Rapino, F., Close, P., Louppe, G., & Geris, L. (2023). Cracking the genetic code with neural networks (poster) [Paper presentation]. Neural networks: real versus man-made, Liège, Belgium.

Lewin, S., Vandegar, M., Hoyoux, T., Barnich, O., & Louppe, G. (2023). Dynamic NeRFs for Soccer Scenes [Poster presentation]. 6th International ACM Workshop on Multimedia Content Analysis in Sports, Ottawa, Canada. doi:10.1145/3606038.3616158
Peer reviewed

Rozet, F., & Louppe, G. (2023). Score-based Data Assimilation for a Two-Layer Quasi-Geostrophic Model [Poster presentation]. Machine Learning and the Physical Sciences Workshop (NeurIPS 2023), New Orleans, United States - Louisiana.
Peer reviewed

Rochman Sharabi, O., & Louppe, G. (03 December 2022). Differentiable composition for model discovery [Poster presentation]. Machine Learning and the Physical Sciences, NeurIPS 2022.
Peer reviewed

Quesnel, M., Orban De Xivry, G., Louppe, G., & Absil, O. (01 December 2022). A deep learning approach for focal-plane wavefront sensing using vortex phase diversity. Astronomy and Astrophysics, 668, 36. doi:10.1051/0004-6361/202143001
Peer Reviewed verified by ORBi

Delaunoy, A.* , Hermans, J.* , Rozet, F., Wehenkel, A., & Louppe, G. (2022). Towards Reliable Simulation-Based Inference with Balanced Neural Ratio Estimation. Advances in Neural Information Processing Systems.
Peer Reviewed verified by ORBi
* These authors have contributed equally to this work.

Louppe, G. (25 November 2022). Détecter des exoplanètes dans des images bruitées grâce à l'intelligence artificielle [Paper presentation]. Nombres, images et autres données…, Liège, Belgium.

Hermans, J., Delaunoy, A., Rozet, F., Wehenkel, A., & Louppe, G. (2022). A Crisis In Simulation-Based Inference? Beware, Your Posterior Approximations Can Be Unfaithful. Transactions on Machine Learning Research.
Peer Reviewed verified by ORBi

Marlier, N., Bruls, O., & Louppe, G. (27 October 2022). Simulation-based Bayesian inference for robotic grasping [Paper presentation]. IROS 2022, Kyoto, Japan.
Peer reviewed

Louppe, G. (20 September 2022). Towards reliable simulation-based inference and beyond [Paper presentation]. Dagstuhl-Seminar 22382: Machine Learning for Science: Bridging Data-Driven and Mechanistic Modelling, Wadern, Germany.

Gal, Y., Koumoutsakos, P., Lanusse, F., Louppe, G., & Papadimitriou, C. (September 2022). Bayesian uncertainty quantification for machine-learned models in physics. Nature Reviews. Physics, 4 (9), 573 - 577. doi:10.1038/s42254-022-00498-4
Peer Reviewed verified by ORBi

Purnode, F., Henrotte, F., Louppe, G., & Geuzaine, C. (01 September 2022). A Homogenized Material Law based on Neural Networks for the Accurate Prediction of Losses in Electrical Machines [Paper presentation]. ACOMEN 2022, Liège, Belgium.

Quesnel, M., Orban De Xivry, G., Absil, O., & Louppe, G. (2022). A simulator-based autoencoder for focal plane wavefront sensing. In L. Schreiber, D. Schmidt, ... E. Vernet, Adaptive Optics Systems VIII (pp. 1218532). Bellingham, WA, United States: SPIE. doi:10.1117/12.2629476
Editorial reviewed

Louppe, G. (04 August 2022). Towards reliable simulation-based inference and beyond [Paper presentation]. Hammers and Nails 2022 - Machine Learning Meets Astro & Particle Physics, Rehovot, Israel.

Louppe, G. (07 July 2022). Towards reliable simulation-based inference [Paper presentation]. CAp-RFIAP 2022, Vannes, France.

Louppe, G. (23 May 2022). Simulation-based inference: proceed with caution! [Paper presentation]. DMML group seminars, Genève, Switzerland.

Louppe, G. (17 May 2022). Simulation-based inference: proceed with caution! [Paper presentation]. MINERVA seminars, Paris, France.

Arnst, M., Louppe, G., Van Hulle, R., Gillet, L., Bureau, F., & Denoël, V. (May 2022). A hybrid stochastic model and its Bayesian identification for infectious disease screening in a university campus with application to massive COVID-19 screening at the University of Liège. Mathematical Biosciences, 347, 108805. doi:10.1016/j.mbs.2022.108805
Peer Reviewed verified by ORBi

Louppe, G. (22 April 2022). Simulation-based inference: proceed with caution! [Paper presentation]. Learning to Discover, Paris, France.

Louppe, G. (21 April 2022). Simulation-based inference: proceed with caution! [Paper presentation]. Likelihood-free in Paris, Paris, France.

Purnode, F., Henrotte, F., Caire, F., Da Silva, J., Louppe, G., & Geuzaine, C. (2022). A Material Law Based on Neural Networks and Homogenization for the Accurate Finite Element Simulation of Laminated Ferromagnetic Cores in the Periodic Regime. IEEE Transactions on Magnetics. doi:10.1109/TMAG.2022.3160651
Peer Reviewed verified by ORBi

Louppe, G. (2022). Une introduction à l'intelligence artificielle [Paper presentation]. IA et le monde d'aujourd'hui, Liège, Belgium.

Denoël, V.* , Bruyère, O.* , Louppe, G., Bureau, F., D'ORIO, V., Fontaine, S., Gillet, L., Guillaume, M., Haubruge, E., Lange, A.-C., Michel, F., Hulle, R. V., Arnst, M., Donneau, A.-F.* , & Saegerman, C.*. (04 March 2022). Decision-based interactive model to determine re-opening conditions of a large university campus in Belgium during the first COVID-19 wave. Archives of Public Health, 80 (1). doi:10.1186/s13690-022-00801-w
Peer Reviewed verified by ORBi
* These authors have contributed equally to this work.

Louppe, G. (08 February 2022). The frontier of simulation-based inference [Paper presentation]. Data Learning seminars, London, United Kingdom.

Purnode, F., Henrotte, F., Caire François, Da Silva Joaquim, Louppe, G., & Geuzaine, C. (18 January 2022). A Material Law Based on Neural Networks and Homogenization for the Accurate Finite Element Simulation of Laminated Ferromagnetic Cores in the Periodic Regime [Poster presentation]. COMPUMAG 2021.

Delaunoy, A., & Louppe, G. (14 December 2021). SAE: Sequential Anchored Ensembles [Poster presentation]. Bayesian Deep Learning, NeurIPS 2021 workshop.
Peer reviewed

Rozet, F., & Louppe, G. (13 December 2021). Arbitrary Marginal Neural Ratio Estimation for Simulation-based Inference [Poster presentation]. Fourth Workshop on Machine Learning and the Physical Sciences (NeurIPS 2021), Vancouver, Canada.
Peer reviewed

Sutera, A., Louppe, G., Huynh-Thu, V. A., Wehenkel, L., & Geurts, P. (2021). From global to local MDI variable importances for random forests and when they are Shapley values. Advances in Neural Information Processing Systems.
Peer Reviewed verified by ORBi

Rodrigues, P., Moreau, T., Louppe, G., & Gramfort, A. (2021). HNPE: Leveraging Global Parameters for Neural Posterior Estimation. Advances in Neural Information Processing Systems.
Peer Reviewed verified by ORBi

Kurt Miller, B., Cole, A., Forré, P., Louppe, G., & Weniger, C. (2021). Truncated Marginal Neural Ratio Estimation. Advances in Neural Information Processing Systems.
Peer Reviewed verified by ORBi

Louppe, G. (11 November 2021). LEGO® Deep Learning [Paper presentation]. BNAIC/BeneLearn 2021, Esch-sur-Alzette, Luxembourg.

Louppe, G. (05 November 2021). Deep latent variable models [Paper presentation]. TRAIL doctoral seminars, Liège, Belgium.

Louppe, G. (20 October 2021). A quick tour of deep generative models [Paper presentation]. Debating the potential of machine learning in astronomical surveys, Paris, France.

Hermans, J., Banik, N., Weniger, C., Bertone, G., & Louppe, G. (2021). Towards constraining warm dark matter with stellar streams through neural simulation-based inference. Monthly Notices of the Royal Astronomical Society. doi:10.1093/mnras/stab2181
Peer Reviewed verified by ORBi

Louppe, G. (27 July 2021). The frontier of simulation-based inference [Paper presentation]. Seventh Machine Learning in High Energy Physics Summer School 2021.

Wehenkel, A., & Louppe, G. (July 2021). Diffusion Priors In Variational Autoencoders [Poster presentation]. ICML Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models.
Peer reviewed

Louppe, G. (23 June 2021). Neural Ratio Estimation For Simulation-based Inference [Paper presentation]. The 28th Nordic Conference in Mathematical Statistics, Tromsø, Norway.

Orban De Xivry, G., Quesnel, M., Vanberg, P.-O., Absil, O., & Louppe, G. (09 June 2021). Focal plane wavefront sensing using machine learning: performance of convolutional neural networks compared to fundamental limits. Monthly Notices of the Royal Astronomical Society, 505 (4), 5702-5713. doi:10.1093/mnras/stab1634
Peer Reviewed verified by ORBi

Louppe, G. (17 May 2021). The frontier of simulation-based inference [Paper presentation]. Apprentissage profond et modèles génératifs pour modéliser l'incertitude des données (2e journée), France.

Louppe, G. (07 May 2021). The frontier of simulation-based inference [Paper presentation]. Algorithms & Computationally Intensive Inference seminars, Warwick, United Kingdom.

Wehenkel, A., & Louppe, G. (2021). Graphical Normalizing Flows. In Proceedings of AISTATS 2021.
Peer reviewed

Vandegar, M., Kagan, M., Wehenkel, A., & Louppe, G. (2021). Neural Empirical Bayes: Source Distribution Estimation and its Applications to Simulation-Based Inference. In Proceedings of AISTATS 2021.
Peer reviewed

Louppe, G. (26 March 2021). The frontier of simulation-based inference [Paper presentation]. Applied Statistics Workshop.

Louppe, G. (11 March 2021). The frontier of simulation-based inference [Paper presentation]. CLARIPHY topical meeting.

Louppe, G. (02 March 2021). Neural Ratio Estimation for Simulation-Based Inference [Paper presentation]. SIAM Conference on Computational Science and Engineering (CSE21).

Louppe, G. (12 February 2021). The frontier of simulation-based inference [Paper presentation]. AIMS Seminar Series, Oxford, United Kingdom.

Dahlqvist, C.-H., Louppe, G., & Absil, O. (04 February 2021). Improving the RSM map exoplanet detection algorithm - PSF forward modelling and optimal selection of PSF subtraction techniques. Astronomy and Astrophysics, 646, 49. doi:10.1051/0004-6361/202039597
Peer Reviewed verified by ORBi

Leroy, P., Ernst, D., Geurts, P., Louppe, G., Pisane, J., & Sabatelli, M. (2021). QVMix and QVMix-Max: Extending the Deep Quality-Value Family of Algorithms to Cooperative Multi-Agent Reinforcement Learning. In Proceedings of the AAAI-21 Workshop on Reinforcement Learning in Games (pp. 8).
Peer reviewed

Louppe, G. (14 January 2021). Scaling AI for Probabilistic Programming in Scientific Simulators [Paper presentation]. EuroHPC's LUMI kick-off, Belgium.

Marlier, N., Bruls, O., & Louppe, G. (2021). Simulation-based Bayesian inference for multi-fingered robotic grasping. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/266100.

Quesnel, M., Orban De Xivry, G., Louppe, G., & Absil, O. (2020). Deep learning-based focal plane wavefront sensing for classical and coronagraphic imaging. In L. Schreiber, D. Schmidt, ... E. Vernet, Adaptive Optics Systems VII (pp. 114481). Bellingham, WA, United States: SPIE. doi:10.1117/12.2562456

Delaunoy, A., Wehenkel, A., Hinderer, T., Nissanke, S., Weniger, C., Williamson, A., & Louppe, G. (11 December 2020). Lightning-Fast Gravitational Wave Parameter Inference through Neural Amortization [Poster presentation]. Machine Learning and the Physical Sciences. Workshop at the 34th Conference on Neural Information Processing Systems (NeurIPS).
Peer reviewed

Hermans, J., Banik, N., Weniger, C., Bertone, G., & Louppe, G. (11 December 2020). Probing Dark Matter Substructure with Stellar Streams and Neural Simulation-Based Inference [Poster presentation]. Machine Learning and the Physical Sciences. Workshop at the 34th Conference on Neural Information Processing Systems (NeurIPS).
Peer reviewed

Kurt Miller, B., Cole, A., Louppe, G., & Weniger, C. (11 December 2020). Simulation-efficient marginal posterior estimation with swyft: stop wasting your precious time [Poster presentation]. Machine Learning and the Physical Sciences. Workshop at the 34th Conference on Neural Information Processing Systems (NeurIPS).
Peer reviewed

Louppe, G. (17 November 2020). Likelihood-free MCMC with Amortized Approximate Ratio Estimators [Paper presentation]. Parietal Seminar Series, Paris, France.

Wehenkel, A., & Louppe, G. (10 July 2020). You say Normalizing Flows I see Bayesian Networks [Poster presentation]. ICML2020 Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models.
Peer reviewed

Hermans, J., Begy, V., & Louppe, G. (2020). Likelihood-free MCMC with Amortized Approximate Ratio Estimators. In Proceedings of the 37th International Conference on Machine Learning (pp. 4239-4248).
Peer reviewed

Sabatelli, M., Louppe, G., Geurts, P., & Wiering, M. (2020). The Deep Quality-Value Family of Deep Reinforcement Learning Algorithms. International Joint Conference on Neural Networks (IJCNN 2020).
Peer reviewed

Cranmer, K., Brehmer, J., & Louppe, G. (2020). The frontier of simulation-based inference. Proceedings of the National Academy of Sciences of the United States of America. doi:10.1073/pnas.1912789117
Peer Reviewed verified by ORBi

Brehmer, J., Louppe, G., Pavez, J., & Cranmer, K. (2020). Mining gold from implicit models to improve likelihood-free inference. Proceedings of the National Academy of Sciences of the United States of America. doi:10.1073/pnas.1915980117
Peer Reviewed verified by ORBi

Louppe, G. (2020). L'intelligence artificielle, danger ou progrès?

Louppe, G. (28 January 2020). A short introduction to Neural Likelihood-free Inference for Physics [Paper presentation]. AMLD 2020, Lausanne, Switzerland.

Louppe, G. (15 January 2020). LEGO Deep Learning Medium Brick Box [Paper presentation]. ML4Jets 2020, New York, United States.

Brehmer, J., Cranmer, K., Mishra-Sharma, S., Kling, F., & Louppe, G. (14 December 2019). Mining gold: Improving simulation-based inference with latent information [Poster presentation]. Machine Learning and the Physical Sciences. Workshop at the 33rd Conference on Neural Information Processing Systems (NeurIPS), Vancouver, Canada.

Vanberg, P.-O., Orban De Xivry, G., Absil, O., & Louppe, G. (14 December 2019). Machine learning for image-based wavefront sensing [Poster presentation]. Machine Learning and the Physical Sciences. Workshop at the 33rd Conference on Neural Information Processing Systems (NeurIPS), Vancouver, Canada.
Peer reviewed

Sabatelli, M., Louppe, G., Geurts, P., & Wiering, M. (2019). Approximating two value functions instead of one: towards characterizing a new family of Deep Reinforcement Learning algorithms. Advances in Neural Information Processing Systems.
Peer Reviewed verified by ORBi

Louppe, G. (2019). Artificial Emotional Intelligence [Paper presentation]. Détection des émotions et intelligence artificielle au service du théâtre, IMPACT forum, Liège, Belgium.

Brehmer, J., Mishra-Sharma, S., Hermans, J., Louppe, G., & Cranmer, K. (19 November 2019). Mining for Dark Matter Substructure: Inferring subhalo population properties from strong lenses with machine learning. Astrophysical Journal, 886 (1). doi:10.3847/1538-4357/ab4c41
Peer Reviewed verified by ORBi

Louppe, G. (19 November 2019). Neural Likelihood-free Inference [Paper presentation]. GRAPPA colloquium, Amsterdam, Netherlands.

Louppe, G., Hermans, J., & Cranmer, K. (08 November 2019). Adversarial Variational Optimization of Non-Differentiable Simulators [Poster presentation]. AI Synergies, Brussels, Belgium.

Louppe, G. (31 October 2019). Neural Likelihood-free Inference [Paper presentation]. Machine Learning and Physics seminars, Oxford, United Kingdom.

Louppe, G. (29 October 2019). Neural Likelihood-free Inference [Paper presentation]. 1st Pan-European Advanced School on Statistics in High Energy Physics, Hamburg, Germany.

Louppe, G. (21 October 2019). Neural Likelihood-free Inference [Paper presentation]. PhD AI seminars at BeCentral, Brussels, Belgium.

Louppe, G. (2019). Intelligence artificielle [Paper presentation]. Conférence APM seniors Liège, Liège, Belgium.

Raimondo, F., Engemann, D., King, J.-R., Rohaut, B., Louppe, G., Faugeras, F., Annen, J., Cassol, H., Gosseries, O., Fernandez Slezak, D., Laureys, S., Naccache, L., Dehaene, S., & Sitt, J. (24 September 2019). Automated Machine Learning-based diagnosis of impaired consciousness: cross-center and protocol generalization of EEG biomarkers [Paper presentation]. 13th CME International Conference on Complex Medical Engineering, Dortmund, Germany.

Wehenkel, A., & Louppe, G. (2019). Unconstrained Monotonic Neural Networks. Advances in Neural Information Processing Systems.
Peer Reviewed verified by ORBi

Louppe, G. (04 July 2019). Likelihood-free inference in Physical Sciences [Paper presentation]. Fifth Machine Learning in High Energy Physics Summer School, Hamburg, Germany.

Günes, B. A., Shao, L., Bhimji, W., Heinrich, L., Meadows, L., Liu, J., Munk, A., Naderiparizi, S., Gram-Hansen, B., Louppe, G., Ma, M., Zhao, X., Torr, P., Lee, V., Cranmer, K., Prabhat, & Wood, F. (2019). Etalumis: Bringing Probabilistic Programming to Scientific Simulators at Scale. Proceedings of SC19, 1907.03382. doi:10.1145/3295500.3356180
Peer reviewed

Gunes Baydin, A., Heinrich, L., Bhimji, W., Gram-Hansen, B., Louppe, G., Shao, L., Prabhat, Cranmer, K., & Wood, F. (2019). Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model. Advances in Neural Information Processing Systems.
Peer Reviewed verified by ORBi

Brehmer, J., Cranmer, K., Espejo, I., Kling, F., Louppe, G., & Pavez, J. (2019). Effective LHC measurements with matrix elements and machine learning. Proceedings of ACAT 2019.
Peer reviewed

Louppe, G. (2019). L'intelligence artificielle pour une médecine plus humaine.

Louppe, G. (19 April 2019). Likelihood ratio estimation for statistical inference in physical sciences [Paper presentation]. NTT Machine Learning workshop, Kyoto, Japan.

Louppe, G. (08 April 2019). Lectures on Deep Learning [Paper presentation]. Advanced Workshop on Accelerating the Search for Dark Matter with Machine Learning, Trieste, Italy.

Louppe, G., Hermans, J., & Cranmer, K. (2019). Adversarial Variational Optimization of Non-Differentiable Simulators. Proceedings of Machine Learning Research.
Peer Reviewed verified by ORBi

Louppe, G. (22 March 2019). Likelihood-free inference in Physical Sciences [Paper presentation]. Artificial Intelligence and Physics, Paris-Orsay, France.

Louppe, G. (2019). Intelligence artificielle [Paper presentation]. Cycle de conférences "De l'homme préhistorique à l'homme robotique", Liège, Belgium.

Louppe, G. (2019). Doc'Café: "Siffler en travaillant? de Marx à l'intelligence artificielle" [Paper presentation]. Doc'café, Liège, Belgium.

Louppe, G. (14 January 2019). Lectures on Deep Learning [Paper presentation]. GGI lectures on the theory of fundamental interactions, Firenze, Italy.

Louppe, G. (09 January 2019). Parameter inference and data modelling with deep learning [Paper presentation]. Flexible operation and advanced control workshop, Cambridge, United Kingdom.

Louppe, G., Cho, K., Becot, C., & Cranmer, K. (2019). QCD-Aware Recursive Neural Networks for Jet Physics. Journal of High Energy Physics. doi:10.1007/JHEP01(2019)057
Peer Reviewed verified by ORBi

Marlier, N., Louppe, G., Bruls, O., & Dislaire, G. (2019). Robotic throwing controller for accelerating a recycling line. In Proceedings of the Robotix Academy Conference for Industrial Robotics (RACIR) 2019. Robotix Academy.

Cranmer, K., Gadatsch, S., Gosh, A., Golling, T., Louppe, G., Rousseau, D., Salamani, D., & Stewart, G. (18 December 2018). Deep generative models for fast shower simulation in ATLAS [Poster presentation]. Bayesian Deep Learning, NeurIPS 2018 Workshop, Montreal, Canada.
Peer reviewed

Pesah, A., Wehenkel, A., & Louppe, G. (08 December 2018). Recurrent machines for likelihood-free inference [Poster presentation]. Workshop of Meta-Learning at Thirty-second Conference on Neural Information Processing Systems 2018, Montreal, Canada.
Peer reviewed

Sabatelli, M., Louppe, G., Geurts, P., & Wiering, M. (2018). Deep Quality Value (DQV) Learning. Advances in Neural Information Processing Systems.
Peer Reviewed verified by ORBi

Louppe, G. (19 November 2018). Likelihood-free inference for Physical Sciences [Paper presentation]. Data Science Seminar Series, Grenoble, France.

Louppe, G. (16 November 2018). Likelihood-free inference in Physical Sciences [Paper presentation]. IIHE invited seminar, Brussels, Belgium.

Louppe, G. (26 October 2018). Likelihood-free inference, effectively [Paper presentation]. 1st Terascale School of Machine Learning, Hamburg, Germany.

Louppe, G. (17 October 2018). Constraining Effective Field Theories with Machine Learning [Paper presentation]. 3rd ATLAS Machine Learning Workshop, Geneva, Switzerland.

Brehmer, J., Cranmer, K., Louppe, G., & Pavez, J. (2018). Constraining Effective Field Theories with Machine Learning. Physical Review Letters. doi:10.1103/PhysRevLett.121.111801
Peer Reviewed verified by ORBi

Brehmer, J., Cranmer, K., Louppe, G., & Pavez, J. (2018). A Guide to Constraining Effective Field Theories with Machine Learning. Physical Review. D. doi:10.1103/PhysRevD.98.052004
Peer Reviewed verified by ORBi

Stoye, M., Brehmer, J., Louppe, G., Pavez, J., & Cranmer, K. (02 August 2018). Likelihood-free inference with an improved cross-entropy estimator [Poster presentation]. Machine Learning and the Physical Sciences, NeurIPS 2019, Vancouver, Canada.
Peer reviewed

The ATLAS collaboration, & Louppe, G. (Other coll.). (2018). Deep generative models for fast shower simulation in ATLAS. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/226551.

Albertsson, K., Altoe, P., Anderson, D., Andrews, M., Araque Espinosa, J. P., Aurisano, A., Basara, L., Bevan, A., Bhimji, W., Bonacorsi, D., Calafiura, P., Campanelli, M., Capps, L., Carminati, F., Carrazza, S., Childers, T., Coniavitis, E., Cranmer, K., David, C., ... Zapata, O. (08 July 2018). Machine Learning in High Energy Physics Community White Paper. Journal of Physics. Conference Series, 1085. doi:10.1088/1742-6596/1085/2/022008
Peer Reviewed verified by ORBi

Hasib, A., Schaarschmidt, J., Gadatsch, S., Golling, T., Salamani, D., Ghosh, A., Rousseau, D., Cranmer, K., Stewart, G., & Louppe, G. (05 July 2018). New approaches using machine learning for fast shower simulation in ATLAS [Paper presentation]. ICHEP 2018 Seoul, Seoul, South Korea.

Louppe, G. (22 June 2018). Likelihood-free inference, effectively [Paper presentation]. AMVA4NewPhysics workshop, Athens, Greece.

Raimondo, F., Engemann, D., King, J.-R., Rohaut, B., Louppe, G., Faugeras, F., Annen, J., Cassol, H., Gosseries, O., Fernandez Slezak, D., Laureys, S., Naccache, L., Dehaene, S., & Sitt, J. (June 2018). Automated Machine Learning-based diagnosis of impaired consciousness: cross-center and protocol generalization of EEG biomarkers [Poster presentation]. HBP International Conference: Understanding Consciousness, Barcelona, Spain.

Louppe, G. (2018). Deep Learning: Past, present and future [Paper presentation]. Journée d'étude de la SRBE «L’intelligence artificielle au sein du système électrique: Ses applications, potentialités et dangers», Brussels, Belgium.

Hermans, J., & Louppe, G. (2018). Gradient Energy Matching for Distributed Asynchronous Gradient Descent. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/226232.

Louppe, G. (2018). Deep Learning: Past, present and future [Paper presentation]. Lunch and Learn at NRB, Liège, Belgium.

Louppe, G. (18 January 2018). Adversarial Games for Particle Physics [Paper presentation]. Accelerating the Search for Dark Matter with Machine Learning, Leiden, Netherlands.

Engemann, D. A.* , Raimondo, F.* , King, J.-R., Rohaut, B., Louppe, G., Faugeras, F., Annen, J., Cassol, H., Gosseries, O., Fernandez-Slezak, D., Laureys, S., Naccache, L., Dehaene, S., & Sitt, J. D. (2018). Robust EEG-based cross-site and cross-protocol classification of states of consciousness. Brain: a Journal of Neurology, 141 (11), 3179-3192. doi:10.1093/brain/awy251
Peer Reviewed verified by ORBi
* These authors have contributed equally to this work.

Sutera, A., Châtel, C., Louppe, G., Wehenkel, L., & Geurts, P. (2018). Random Subspace with Trees for Feature Selection Under Memory Constraints. In A. Storkey & F. Perez-Cruz (Eds.), Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics (pp. 929-937). Playa Blanca, Spain: PMLR.
Peer reviewed

Henrion, I., Brehmer, J., Bruna, J., Cho, K., Cranmer, K., Louppe, G., & Rochette, G. (08 December 2017). Neural Message Passing for Jet Physics [Paper presentation]. Deep Learning for Physical Sciences workshop, NIPS 2018, Los Angeles, United States.

Lezcano Casado, M., Gunes Baydin, A., Martinez Rubio, D., Le, T. A., Wood, F., Heinrich, L., Louppe, G., Cranmer, K., Ng, K., Bhimji, W., & Prabhat. (08 December 2017). Improvements to Inference Compilation for Probabilistic Programming in Large-Scale Scientific Simulators [Poster presentation]. Deep Learning for Physical Sciences workshop, NeurIPS 2018, Montreal, Canada.
Peer reviewed

Louppe, G. (08 December 2017). Adversarial Games for Particle Physics [Paper presentation]. Deep Learning for Physical Sciences workshop, NIPS 2018, Los Angeles, United States.

Henrion, I., Brehmer, J., Bruna, J., Cho, K., Cranmer, K., Louppe, G., & Rochette, G. (2017). Neural Message Passing for Jet Physics. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/226446.

Louppe, G. (02 November 2017). Teaching Machines to Discover Particles [Paper presentation]. HEP seminar, Nijmegen, Netherlands.

Louppe, G. (29 September 2017). Teaching Machines to Discover Particles [Paper presentation]. Nikhef Colloquium, Amsterdam, Netherlands.

Raimondo, F., Engemann, D., King, J.-R., Rohaut, B., Louppe, G., Laureys, S., Fernandez Slezak, D., Naccache, L., Dehaene, S., & Sitt, J. (August 2017). Automated Machine Learning-based diagnosis of impaired consciousness: cross-center and protocol generalization of EEG biomarkers [Paper presentation]. Annual congress of the International NeuroInformatics Coordinating Facility (INCF), Kuala Lumpur, Malaysia.

Louppe, G. (20 July 2017). Teaching Machines to Discover Particles [Paper presentation]. Hammers and Nails - Machine Learning and HEP, Rehovot, Israel.

Louppe, G., & Cranmer, K. (20 July 2017). Adversarial Variational Optimization of Non-Differentiable Simulators [Paper presentation]. Hammers and Nails - Machine Learning and HEP, Rehovot, Israel.

Louppe, G., Cho, K., Becot, C., & Cranmer, K. (07 June 2017). QCD-Aware Recursive Neural Networks for Jet Physics [Paper presentation]. ATLAS Machine Learning workshop, Geneva, Switzerland.

Louppe, G., Kagan, M., & Cranmer, K. (10 May 2017). Learning to pivot with adversarial networks [Paper presentation]. Data Science @ HEP 2017, Chicago, United States.

Louppe, G. (2017). Bayesian Optimisation with Scikit-Optimize [Paper presentation]. PyData Amsterdam, Amsterdam, Netherlands.

Louppe, G., Kagan, M., & Cranmer, K. (07 April 2017). Learning to pivot with adversarial networks [Paper presentation]. IIHE seminar, Brussels, Belgium.

Louppe, G. (21 March 2017). An introduction to Machine Learning with Scikit-Learn [Paper presentation]. IML Machine Learning Workshop, Geneva, Switzerland.

Cranmer, K., Pavez, J., Louppe, G., & Brooks, W. K. (2016). Experiments using machine learning to approximate likelihood ratios for mixture models. In Journal of Physics Conference Series. doi:10.1088/1742-6596/762/1/012034
Peer reviewed

Louppe, G., Kagan, M., & Cranmer, K. (17 November 2016). Learning to pivot with adversarial networks [Paper presentation]. ATLAS ML Forum, Geneva, Switzerland.

Louppe, G., Kagan, M., & Cranmer, K. (November 2016). Learning to Pivot with Adversarial Networks. Advances in Neural Information Processing Systems, 30.
Peer Reviewed verified by ORBi

Louppe, G. (October 2016). Lectures on Machine Learning [Paper presentation]. Machine Learning and Data Science in Physics, Barcelona, Spain.

Sutera, A., Châtel, C., Louppe, G., Wehenkel, L., & Geurts, P. (12 September 2016). Random subspace with trees for feature selection under memory constraints [Poster presentation]. The 25th Belgian-Dutch Conference on Machine Learning (Benelearn), Kortrijk, Belgium.
Peer reviewed

Louppe, G. (03 August 2016). Learning to generate with adversarial networks [Paper presentation]. US ATLAS Physics Support, Software and Computing meeting, Chicago, United States.

Louppe, G. (21 July 2016). Learning to generate with adversarial networks [Paper presentation]. ATLAS ML Forum, Geneva, Switzerland.

Louppe, G. (07 July 2016). Learning to generate with adversarial networks [Paper presentation]. DS@HEP at the Simons Foundation, New York, United States.

Louppe, G. (27 June 2016). Learning to generate with adversarial networks [Paper presentation]. Software R&D: Next Gen Simulation, Geneva, Switzerland.

Louppe, G., Cranmer, K., & Pavez, J. (22 June 2016). Approximating likelihood ratios with Calibrated Classifiers [Paper presentation]. Second Machine Learning in High Energy Physics Summer School 2016, Lund, Sweden.

Sutera, A., Louppe, G., Huynh-Thu, V. A., Wehenkel, L., & Geurts, P. (2016). Context-dependent feature analysis with random forests. In Uncertainty In Artificial Intelligence: Proceedings of the Thirty-Two Conference (2016).
Peer reviewed

Maguire, E., Montull, J. M., & Louppe, G. (2016). Visualization of Publication Impact. In EuroVis '16 Proceedings of the Eurographics / IEEE VGTC Conference on Visualization: Short Papers.
Peer reviewed

Louppe, G. (2016). Robust and Calibrated Classifiers with Scikit-Learn [Paper presentation]. Zurich ML meetup, Zurich, Switzerland.

Louppe, G. (11 April 2016). Bayesian Optimisation [Paper presentation]. DIANA meeting, Geneva, Switzerland.

Louppe, G. (30 March 2016). Bayesian Optimisation [Paper presentation]. ATLAS ML workshop, Geneva, Switzerland.

Louppe, G., Cranmer, K., & Pavez, J. (29 March 2016). Approximating likelihood ratios with Calibrated Classifiers [Paper presentation]. ATLAS Machine Learning workshop, Geneva, Switzerland.

Louppe, G., Cranmer, K., & Pavez, J. (13 March 2016). Approximating likelihood ratios with Calibrated Classifiers [Paper presentation]. ETH Machine Learning seminar, Zurich, Switzerland.

Louppe, G. (18 February 2016). An introduction to Machine Learning with Scikit-Learn [Paper presentation]. Heavy Flavour Data Mining workshop, Zurich, Switzerland.

Louppe, G., & Head, T. (18 February 2016). Pitfalls of evaluating a classifier’s performance in high energy physics applications [Paper presentation]. Heavy Flavour Data Mining workshop, Zurich, Switzerland.

Marée, R., Rollus, L., Stévens, B., Hoyoux, R., Louppe, G., Vandaele, R., Begon, J.-M., Kainz, P., Geurts, P., & Wehenkel, L. (2016). Collaborative analysis of multi-gigapixel imaging data using Cytomine. Bioinformatics, 7. doi:10.1093/bioinformatics/btw013
Peer Reviewed verified by ORBi

Louppe, G., & Head, T. (11 December 2015). Pitfalls of evaluating a classifier’s performance in high energy physics applications [Paper presentation]. ALEPH workshop, NIPS 2015, Montréal, Canada.

Louppe, G. (12 November 2015). An introduction to Machine Learning with Scikit-Learn [Paper presentation]. Data Science at LHC, Geneva, Switzerland.

Louppe, G., & Head, T. (05 October 2015). Classification with a control channel: Don't cheat yourself [Paper presentation]. LHCb PPTS meeting, Geneva, Switzerland.

Louppe, G. (30 September 2015). Scikit-Learn tutorial [Paper presentation]. AstroHack week 2015, New York, United States.

Louppe, G. (21 September 2015). Understanding Random Forests [Paper presentation]. Software and Computing R&D Working Meeting, Geneva, Switzerland.

Louppe, G., Al-Natsheh, H., Susik, M., & Maguire, E. (2015). Ethnicity sensitive author disambiguation using semi-supervised learning. In Communications in Computer and Information Science.
Peer reviewed

Cranmer, K., Pavez, J., & Louppe, G. (2015). Approximating Likelihood Ratios with Calibrated Discriminative Classifiers. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/226016.

Louppe, G. (23 April 2015). An introduction to Machine Learning with Scikit-Learn [Paper presentation]. LHCb Scikit-Learn tutorial, Geneva, Switzerland.

Louppe, G. (03 April 2015). Tree models with Scikit-Learn: Great models with little assumptions [Paper presentation]. PyData Paris 2015, Paris, France.

Louppe, G. (2015). Machine Learning for Author Disambiguation [Paper presentation]. INSPIRE@CERN Team Meeting, Geneva, Switzerland.

McGovern, A., Gagne II, D. J., Eustaquio, L., Titericz, G., Lazorthes, B., Zhang, O., Louppe, G., Prettenhofer, P., Basara, J., Hamill, T. M., & Margolin, D. (2015). Solar Energy Prediction: An International Contest to Initiate Interdisciplinary Research on Compelling Meteorological Problems. Bulletin of the American Meteorological Society. doi:10.1175/BAMS-D-14-00006.1
Peer Reviewed verified by ORBi

Louppe, G. (2014). Bias-variance decomposition in Random Forests [Paper presentation]. Paris Machine Learning Meetup 4 (saison 2), Paris, France.

Louppe, G. (18 November 2014). Scikit-Learn in Particle Physics [Paper presentation]. Data Science Academic software: From scikit-learn and scikit-image to domain science, Paris, France.

Louppe, G. (2014). Understanding Random Forests: From Theory to Practice [Doctoral thesis, ULiège - Université de Liège]. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/170309

Louppe, G. (29 August 2014). Accelerating Random Forests in Scikit-Learn [Paper presentation]. EuroScipy 2014, Cambridge, United Kingdom.

Sutera, A., Joly, A., François-Lavet, V., Qiu, Z., Louppe, G., Ernst, D., & Geurts, P. (2014). Simple connectome inference from partial correlation statistics in calcium imaging. In J. Soriano, D. Battaglia, I. Guyon, V. Lemaire, J. Orlandi, ... B. Ray (Eds.), Neural Connectomics Challenge. Springer.
Peer reviewed

Marée, R., Rollus, L., Stevens, B., Louppe, G., Caubo, O., Rocks, N., Bekaert, S., Cataldo, D., & Wehenkel, L. (2014). A hybrid human-computer approach for large-scale image-based measurements using web services and machine learning. In Proceedings IEEE International Symposium on Biomedical Imaging. IEEE. doi:10.1109/isbi.2014.6868017
Peer reviewed

Botta, V., Louppe, G., Geurts, P., & Wehenkel, L. (2014). Exploiting SNP Correlations within Random Forest for Genome-Wide Association Studies. PLoS ONE. doi:10.1371/journal.pone.0093379
Peer Reviewed verified by ORBi

Prettenhofer, P., & Louppe, G. (23 February 2014). Gradient Boosted Regression Trees in Scikit-Learn [Paper presentation]. PyData 2014, London, United Kingdom.

Louppe, G., & Prettenhofer, P. (05 February 2014). Forecasting Daily Solar Energy Production Using Robust Regression Techniques [Paper presentation]. 94th American Meteorological Society Annual Meeting, Atlanta, United States.

Joly, A., & Louppe, G. (27 January 2014). Scikit-Learn: Machine Learning in the Python ecosystem [Poster presentation]. GIGA DAY 2014, Liège, Belgium.

Louppe, G., & Varoquaux, G. (10 December 2013). Scikit-Learn: Machine Learning in the Python ecosystem [Poster presentation]. NIPS 2013 Workshop on Machine Learning Open Source Software.
Peer reviewed

Louppe, G., Wehenkel, L., Sutera, A., & Geurts, P. (2013). Understanding variable importances in forests of randomized trees. In Advances in Neural Information Processing Systems 26.
Peer reviewed

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F. (Other coll.), Müller, A. (Other coll.), Grisel, O. (Other coll.), Niculae, V. (Other coll.), Prettenhofer, P. (Other coll.), Gramfort, A. (Other coll.), Grobler, J. (Other coll.), Layton, R. (Other coll.), Vanderplas, J. (Other coll.), Joly, A. (Other coll.), Holt, B. (Other coll.), & Varoquaux, G. (Other coll.). (23 September 2013). API design for machine learning software: experiences from the scikit-learn project [Paper presentation]. ECML/PKDD 2013 Workshop: Languages for Data Mining and Machine Learning, Prague, Czechia.

Marée, R., Stevens, B., Rollus, L., Louppe, G., & Wehenkel, L. (October 2012). A rich internet application for remote visualization, collaborative annotation, and automated analysis of large-scale biomages [Poster presentation]. Turning Images to Knowledge: Large-Scale 3D Image Annotation, Management, and Visualization, Ashburn, United States.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Müller, A., Nothman, J., Louppe, G., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (02 January 2012). Scikit-learn: Machine Learning in Python. arXiv e-prints, 1201.
Peer reviewed

Louppe, G., & Geurts, P. (2012). Ensembles on Random Patches. In Machine Learning and Knowledge Discovery in Databases. Berlin, Germany: Springer-Verlag.
Peer reviewed

Geurts, P., & Louppe, G. (January 2011). Learning to rank with extremely randomized trees. Proceedings of Machine Learning Research, 14, 49-61.
Peer Reviewed verified by ORBi

Louppe, G., & Geurts, P. (11 December 2010). A zealous parallel gradient descent algorithm [Poster presentation]. NIPS 2010 Workshop on Learning on Cores, Clusters and Clouds, Whistler, Canada.

Louppe, G. (2010). Collaborative filtering: Scalable approaches using restricted Boltzmann machines [Master’s dissertation, ULiège - Université de Liège]. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/74400

Contact ORBi