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AI: Machine learning and Deep learning
 Both Machine learning ML and Deep Learning DL are 

part of the broad field of Artificial Intelligence AI
 ML first requires features extraction for classification 

or regression purposes
 DL skips the feature extraction and directly uses the 

raw data to learn from them by training a so called 
neural network

A pedagogical showcase
 Deep learning holds great promise for 

biomedical research using omics data
 Applying DL technologies to omics research 

still faces two difficulties: (i) the ‘black box’ 
problem and (ii) the data quality and 
availability problem.

 Our study is a pedagogical contribution to 
address the black-box problem

Deep learning toy project
 The genetic code is textbook scientific 

knowledge established without resorting to AI
 Can DL architectures crack the code and unravel 

the correct knowledge from a training dataset ?
 The self-learning algorithm will lead to a 

deciphered code that should not be perceived as 
a black-box. How much data is needed to 
decipher the complete genetic code table?
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RESULTS AND CONCLUSIONS 

MATERIALS & METHODS
Basic architectures in Deep Learning: the Multi-Layer Perceptron (MLP)

 The primitive of all neural networks is the perceptron, invented by McCulloch and Pitts and improved by Rosenblatt (1943, 1958).
 A perceptron mimics the behavior of a brain neuron by combining the mathematical properties of linear algebra with an activation function.
 The perceptron receives several input data, multiplies them with weights (learnable parameters) and produces one or several firing signal(s).
 The firing signals may serve as input data to a second layer of perceptrons. The larger the number of layers, the deeper the network (this is DL).
 The output signals may be turned into a set of probabilities (simplex vector) for classification purposes and then compared with a ground truth 

vector.
 An objective function (loss function) is computed and optimized by updating the learnable parameters iteratively through a stochastic gradient 

descent method (automatic differentiation, backpropagation). The loss function keeps decreasing during learning on the training dataset.

From the perceptron (primitive of all neural networks)…
… to the multi-layer-perceptron (MLP), a.k.a. the fully connected feedforward network
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Conclusions
 Resorting to AI and Deep Learning to gain data-driven knowledge requires a huge amount of high quality data for training the neural network.
 The wide generic capacities and modularity of DL networks allow them to be customized easily to learn the deciphering task of the genetic code.
 The biomedical research community is confronted to a trade-off between model complexity (or understandability) and data efficiency (amount

of data needed to produce the inferred rules with a chosen accuracy).

Training performance and data efficiency of the learning process
Loss function and training accuracy evolution during learning on the training dataset:


