Cracking the genetic code with neural networks
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Al: Machine learning and Deep learning A pedagogical showcase Deep learning toy project
0 Both Machine learning ML and Deep Learning DLare  Q Deep learning holds great promise for 0 The genetic code is textbook scientific
part of the broad field of Artificial Intelligence Al biomedical research using omics data knowledge established without resorting to Al
0O ML first requires features extraction for classification 0 Applying DL technologies to omics research 0 Can DL architectures crack the code and unravel
or regression purposes still faces two difficulties: (i) the ‘black box’ the correct knowledge from a training dataset ?
Q DL skips the feature extraction and directly uses the problem and (ii) the data quality and Q The self-learning algorithm will lead to a
raw data to learn from them by training a so called availability problem. deciphered code that should not be perceived as
neural network Q Our study is a pedagogical contribution to a black-box. How much data is needed to
address the black-box problem decipher the complete genetic code table?

MATERIALS & METHODS

Basic architectures in Deep Learning: the Multi-Layer Perceptron (MLP)
The primitive of all neural networks is the perceptron, invented by McCulloch and Pitts and improved by Rosenblatt (1943, 1958).

A perceptron mimics the behavior of a brain neuron by combining the mathematical properties of linear algebra with an activation function.
The perceptron receives several input data, multiplies them with weights (learnable parameters) and produces one or several firing signal(s).
The firing signals may serve as input data to a second layer of perceptrons. The larger the number of layers, the deeper the network (this is DL).
The output signals may be turned into a set of probabilities (simplex vector) for classification purposes and then compared with a ground truth
vector.

An objective function (loss function) is computed and optimized by updating the learnable parameters iteratively through a stochastic gradient
descent method (automatic differentiation, backpropagation). The loss function keeps decreasing during learning on the training dataset.

From the perceptron (primitive of all neural networks)...
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RESULTS AND CONCLUSIONS

Genetic Code Deciphering with a MLP64-128 d=2 embedding

Training performance and data efficiency of the learning process

Loss function and training accuracy evolution during learning on the training dataset:
EPOCH = 16,BATCH = 9000 ELAPSED TIME = 63,8 9216000 PAIRS PRESENTED, TRAIN, ACCURACY = 100,00%
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. Conclusions
Eﬂ v’ Resorting to Al and Deep Learning to gain data-driven knowledge requires a huge amount of high quality data for training the neural network.
v’ The wide generic capacities and modularity of DL networks allow them to be customized easily to learn the deciphering task of the genetic code.
v’ The biomedical research community is confronted to a trade-off between model complexity (or understandability) and data efficiency (amount
of data needed to produce the inferred rules with a chosen accuracy).
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