Varietal and environmental effects on the production of faba bean (Vicia faba L.) seeds for the food industry by confrontation of agricultural and nutritional traits with resistance against Bruchus spp. (Coleoptera: Chrysomelidae, Bruchinae)
Faba bean; Variety; Bruchus spp.; Chemical composition; Yield
Abstract :
[en] Faba bean is a globally produced agricultural crop due to the high protein content in seeds. However, yields strongly vary depending on biotic and abiotic factors. Here, we evaluated the combined effect of faba bean varieties and climate on crop productivity, seed quality and Bruchus spp. infestation to identify most promising faba bean varieties for use in the food industry as local protein source. Varietal and year related factors were studied during two cropping years to explain variation of field yield, seed protein/ash/lipid content, protein production, and infestation rates. Fourteen varieties including nine winter varieties and five spring varieties were compared, from which one variety presented stable and promising yield, seed composition and low infestation rates. Annual effects significantly impacted field yield and protein production in contrast with the varietal effect that significantly impacted seeds protein content and infestation rates. Principal components analysis showed that infestation rate and yield were not correlated; thus, these two parameters could be optimized independently. The spring variety Fanfare exhibited the best and most stable results over the two study periods. Winter varieties had higher yields, whereas spring varieties had higher seed protein content. The main parameters impacting bruchid infestations were variety, indicating the need to select certain varieties that reduce the impact of pests on seed quality. During 2020, a drought during growing season significantly impacted faba bean production, demonstrating the importance of developing drought-resistant varieties. Thus, fourteen faba bean varieties were characterized considering together key parameters for food uses, and were ranked to identify most interesting ones. We also highlighted most impacting parameters that should be taken into account for the future improvement of varietal resilience in European countries.
Disciplines :
Entomology & pest control Biochemistry, biophysics & molecular biology Agriculture & agronomy
Author, co-author :
Segers, Arnaud ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs
Dumoulin, Lionel ; Université de Liège - ULiège > TERRA Research Centre
Caparros Megido, Rudy ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs
Jacquet, Nicolas ; Université de Liège - ULiège > Département GxABT > SMARTECH
Cartrysse, Christine; CePiCOP asbl - Centre Pilote Wallon des Céréales et des Oléo-Protéagineux
Malumba Kamba, Paul ; Université de Liège - ULiège > Département GxABT > SMARTECH
Richel, Aurore ; Université de Liège - ULiège > Département GxABT > SMARTECH
Blecker, Christophe ; Université de Liège - ULiège > Département GxABT > SMARTECH
Francis, Frédéric ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs
Language :
English
Title :
Varietal and environmental effects on the production of faba bean (Vicia faba L.) seeds for the food industry by confrontation of agricultural and nutritional traits with resistance against Bruchus spp. (Coleoptera: Chrysomelidae, Bruchinae)
Publication date :
April 2022
Journal title :
Agriculture, Ecosystems and Environment
ISSN :
0167-8809
eISSN :
1873-2305
Publisher :
Elsevier, Netherlands
Volume :
327
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
FEVERPRO
Funders :
Service public de Wallonie. Secrétariat général - SPW-SG
Bachmann, M., Kuhnitzsch, C., Martens, S.D., Steinhöfel, O., Zeyner, A., Control of bean seed beetle reproduction through cultivar selection and harvesting time. Agric. Ecosyst. Environ., 300, 2020, 107005, 10.1016/j.agee.2020.107005.
Barłóg, P., Grzebisz, W., Łukowiak, R., The effect of potassium and sulfur fertilization on seed quality of faba bean (Vicia faba L.). Agronomy, 2019, 9–209, 10.3390/agronomy9040209.
Baugnée, J.-Y., Drumont, A., Fagot, J., et al., 2021. Bruchidius imbricornis (Panzer, 1795), Bruchus occidentalis Lukjanovitch & Ter-Minassian, 1957 et Bruchus brachialis Fåhraeus, 1839 nouveaux pour la faune belge et données récentes de Bruchidius siliquastri Delobel, 2007 (Coleoptera: Chrysomelidae, Bruchinae). (Not published yet).
Ben Amira, A., Bauwens, J., De Pauw, E., Besbes, S., Attia, H., Francis, F., Blecker, C., Identification of proteins from wild cardoon flowers (Cynara cardunculus L.) by a proteomic approach. J. Chem. Biol. 10 (2017), 25–33, 10.1007/s12154-016-0161-9.
Biarnès, V., Penant, A., Remurier, B., Guide de culture feverole, 2018.
Boughdad, A., 1994. Statut de nuisibilite et ecologie des populations de Bruchus rufimanus Boheman, 1833 sur Vicia faba L. au Maroc (Thesis), Paris, 11.
Boughdad, A., Lauge, G., Vicia faba seed infestation and losses due to Bruchus rufimanus Boh. (Coleoptera: Bruchidae) in Morocco. FABIS News Lett. 36 (1995), 20–23.
Bruce, T.J., Martin, J.L., Smart, L.E., Pickett, J.A., Development of semiochemical attractants for monitoring bean seed beetle, Bruchus rufimanus. Pest Manag. Sci. 67 (2011), 1303–1308, 10.1002/ps.2186.
Carrillo-Perdomo, E., Raffiot, B., Ollivier, D., Deulvot, C., Magnin-Robert, J.B., Tayeh, N., Marget, P., Identification of novel sources of resistance to seed weevils (Bruchus spp.) in a faba bean germplasm collection. Front. Plant Sci., 9, 2019, 1914, 10.3389/fpls.2018.01914.
Chapelin-Viscardi, J.-D., Darracq Dauguet, S., Gwénola, R., et al., 2019. Bruches des légumineuses: gestion au champ et au stockage, 32–36.
European Parliament, 2018. A European strategy for the promotion of protein crops.
FAO/WHO/UNU, 2007. Protein and Amino Acid Requirements in Human Nutrition: Report of a joint WHO/FAO/UNU Expert Consultation: WHO Technical Report Series 935. Geneva.
Gasim, S., Hamad, S.A.A., Abdelmula, A., Ahmed, I.A.M., Yield and quality attributes of faba bean inbred lines grown under marginal environmental conditions of Sudan. Food Sci. Nutr. 3 (2015), 539–547, 10.1002/fsn3.245.
https://www.meteo.be/fr/belgique.
Hoffman, A., Labeyrie, V., Balachowsky, A.S., Famille des bruchidae. Èntomol. appl. l'agriculture 1 (1962), 434–494.
Howe, R.W., Currie, J.E., Some laboratory observations on the rates of development, mortality and oviposition of several species of Bruchidae breeding in stored pulses. Bull. Èntomol. Res. 55 (1964), 437–477, 10.1017/S0007485300049580.
Hoyaux, J., Verheyden, J., Bogaert, Y., et al., 2010, Belgian national climate change adaptation strategy.
Huignard, J., Glitho, I.A., Sembène, M., L'infestation des cultures puis des stocks de graines par les Coléoptères Bruchinae. Insectes Ravag. Graines légumineuses: Biol. Bruchinae Lutte Raison. En. Afr., 2011, 33–64.
Husson, F., Josse, J., Le, S., Mazet, J., 2020. FactoMineR: Multivariate Exploratory Data Analysis and Data Mining. Version 2.4. 〈 https://CRAN.R-project.org/package=FactoMineR〉.
Jaquiery, R., Keller, E.R., Influence of the distribution of assimilates on pod set in faba beans (Vicia faba L.). FABIS Newsl., 1980.
Jensen, E.S., Peoples, M.B., Hauggaard-Nielsen, H., Faba bean in cropping systems. Field Crops Res. 115 (2010), 203–216, 10.1016/j.fcr.2009.10.008.
Kaiser, H.F., A note on Guttman's lower bound for the number of common factors1. Br. J. Stat. Psychol. 14 (1961), 1–2, 10.1111/j.2044-8317.1961.tb00061.x.
Kaniuczak, Z., Seed damage of field bean (Vicia faba L. var. Minor Harz.) caused by bean weevils (Bruchus rufimanus Boh.) (Coleoptera: Bruchidae). J. Plant Prot. Res., 2004, 125–129.
Karkanis, A., Ntatsi, G., Lepse, L., et al. Faba bean cultivation – revealing novel managing practices for more sustainable and competitive european cropping systems. Front. Plant Sci., 2018, 9, 10.3389/fpls.2018.01115.
Kassambara, A., Mundt, F., 2020. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. Version 1.0.7. 〈 https://CRAN.R-project.org/package=factoextra〉.
Khan, H.R., Paull, J.G., Siddique, K.H.M., Stoddard, F.L., Faba bean breeding for drought-affected environments: a physiological and agronomic perspective. Field Crops Res. 115 (2010), 279–286, 10.1016/j.fcr.2009.09.003.
Khazaei, H., O'Sullivan, D., Stoddard, F., et al., 2020. Recent Advances in Faba Bean Genetic and Genomic Tools for Crop Improvement. 〈 https://doi.org/10.20944/preprints202012.0372.v1〉.
Khelfane-Goucem, K., Medjdoub-Bensaad, F., Impact of Bruchus rufimanus infestation upon broad bean seeds germination. Adv. Environ. Biol. 10 (2016), 144–152.
Köpke, U., Nemecek, T., Ecological services of faba bean. Field Crops Res. 115 (2010), 217–233, 10.1016/j.fcr.2009.10.012.
Korsvold, K.K., Starch and protein accumulation during seed development of field grown faba beans (Vicia faba L. cv. Vertigo) in Norway. Innlagring Av. stivelse Og. Protein frøutvikling i åkerbønner (Vicia faba L cv Vertigo) Dyrk. i Nor., 2020.
Lacampagne, J.-P., 2021. Production et marchés des pois et féverole. Angers.
Landry, E.J., Fuchs, S.J., Hu, J., Carbohydrate composition of mature and immature faba bean seeds. J. Food Compos. Anal. 50 (2016), 55–60, 10.1016/j.jfca.2016.05.010.
Lattanzio, V., Terzano, R., Cicco, N., Cardinali, A., Venere, D.D., Linsalata, V., Seed coat tannins and bruchid resistance in stored cowpea seeds. J. Sci. Food Agric. 85 (2005), 839–846, 10.1002/jsfa.2024.
Link, W., Balko, C., Stoddard, F.L., Winter hardiness in faba bean: physiology and breeding. Field Crops Res. 115 (2010), 287–296, 10.1016/j.fcr.2008.08.004.
Medjdoub-Bensaad, F., Frah, N., Khelil, M., Huignard, J., Dynamique des populations de la bruche de la fève, Bruchus rufimanus (Coleoptera: Chrysomelidae), durant la période d'activité reproductrice et de diapause. Nat. Technol., 2015, 12–21.
Micek, P., Kowalski, Z.M., Kulig, B., Kański, J., Effect of variety and plant protection method on chemical composition and in vitro digestibility of faba bean (Vicia faba) seeds. Ann. Anim. Sci. 15 (2015), 143–154, 10.2478/aoas-2014-0080.
Mihailović, V., Mikić, A., Vasić, M., et al. Neglected legume crops of Serbia: faba bean (Vicia faba). Ratar. i Povrt. 47 (2010), 27–32.
Mínguez, M.I., Rubiales, D., Faba bean. Sadras, V.O., Calderini, D.F., (eds.) Crop Physiology Case Histories for Major Crops, 2021, Academic Press, 452–481.
Mishra, S.K., Macedo, M.L.R., Panda, S.K., Panigrahi, J., Bruchid pest management in pulses: past practices, present status and use of modern breeding tools for development of resistant varieties. Ann. Appl. Biol. 172 (2018), 4–19, 10.1111/aab.12401.
Mitchell, C., Brennan, R.M., Graham, J., Karley, A.J., Plant defense against herbivorous pests: exploiting resistance and tolerance traits for sustainable crop protection. Front. Plant Sci., 2016, 7, 10.3389/fpls.2016.01132.
Nagakawa, S., Schielzeth, H., Nested by design: model fitting and interpretation in a mixed model era. Methods Ecol. Evol., 2013, 10.1111/j.2041-210x.2012.00251.x.
Neugschwandtner, R., Ziegler, K., Kriegner, S., et al. Nitrogen yield and nitrogen fixation of winter faba beans. Acta Agric. Scand. Sect. B — Soil Plant Sci. 65 (2015), 658–666, 10.1080/09064710.2015.1042028.
Neugschwandtner, R.W., Bernhuber, A., Kammlander, S., Wagentristl, H., Klimek-Kopyra, A., Kaul, H.P., Agronomic potential of winter grain legumes for Central Europe: development, soil coverage and yields. Field Crops Res., 241, 2019, 107576, 10.1016/j.fcr.2019.107576.
Parr, M.J., Tran, B.M.D., Simmonds, M.S.J., Kite, G.C., Credland, P.F., Influence of some fatty acids on oviposition by the bruchid beetle, Callosobruchus maculatus. J. Chem. Ecol. 24 (1998), 1577–1593, 10.1023/A:1020894410107.
Pastor-Cavada, E., Juan, R., Pastor, J.E., Alaiz, M., Vioque, J., Protein and amino acid composition of select wild legume species of tribe Fabeae. Food Chem. 163 (2014), 97–102, 10.1016/j.foodchem.2014.04.078.
Patrick, J.W., Stoddard, F.L., Physiology of flowering and grain filling in faba bean. Field Crops Res. 115 (2010), 234–242, 10.1016/j.fcr.2009.06.005.
Pölitz, B., Reike, H.-P., Studies on biology and infestation dynamics of the bean seed beetle (Coleoptera, Bruchidae: Bruchus rufimanus) in Saxony. Gesund Pflanz., 2019, 10.1007/s10343-019-00459-5.
Reckling, M., Döring, T.F., Bergkvist, G., Stoddard, F.L., Watson, C.A., Seddig, S., Chmielewski, F.M., Bachinger, J., Grain legume yields are as stable as other spring crops in long-term experiments across northern Europe. Agron. Sustain Dev., 38, 2018, 63, 10.1007/s13593-018-0541-3.
Rempel, C., Geng, X., Zhang, Y., Industrial scale preparation of pea flour fractions with enhanced nutritive composition by dry fractionation. Food Chem. 276 (2019), 119–128, 10.1016/j.foodchem.2018.10.003.
Roubinet, E., 2016. Management of the broad bean weevil (Bruchus rufimanus Boh.) in faba bean (Vicia faba L.). Uppsala.
Rowlands, D.G., Fertility studies in the field bean Vicia faba L.). 1. Cross and self-fertility. Heredity 15 (1960), 161–173.
Segers, A., Caparros Megido, R., Lognay, G., Francis, F., Overview of Bruchus rufimanus BOHEMAN 1833 (COLEOPTERA: Chrysomelidae): biology, chemical ecology and semiochemical opportunities in integrated pest management programs. Crop Prot., 2020, 105411, 10.1016/j.cropro.2020.105411.
Seidenglanz, M., Huňady, I., Effects of faba bean (Vicia faba) varieties on the development of Bruchus rufimanus. Czech J. Genet. Plant Breed. 52 (2016), 22–29, 10.17221/122/2015-CJGPB.
Seidenglanz, M., Huňady, I., Poslušná, J., Løes, A.-K., Influence of intercropping with spring cereals on the occurrence of pea aphids (Acyrthosiphon pisum Harris, 1776) and their natural enemies in field pea (Pisum sativum L.). Plant Prot. Sci. 47:2011 (2011), 25–36, 10.17221/40/2010-PPS.
Sharan, S., Zanghelini, G., Zotzel, J., Bonerz, D., Aschoff, J., Saint-Eve, A., Maillard, M.N., Fava bean (Vicia faba L.) for food applications: from seed to ingredient processing and its effect on functional properties, antinutritional factors, flavor, and color. Compr. Rev. Food Sci. Food Saf. 20 (2021), 401–428, 10.1111/1541-4337.12687.
Shearman, V.J., Sylvester-Bradley, R., Scott, R.K., Foulkes, M.J., Physiological processes associated with wheat yield progress in the UK. Crop Sci. 45 (2005), 175–185.
Simmen, M., La filière féverole à la loupe: une culture en mutation. Perspect. Agric.(481), 2020, 12–15.
Singh, A., Rajamanickam, E., Bhadana, V.P., Kumar, S., 2012. Improvement of seed protein content and quality in faba bean (Vicia faba L.). pp. 155–62.
Singhal, A., Stone, A.K., Vandenberg, A., Tyler, R., Nickerson, M.T., Effect of genotype on the physicochemical and functional attributes of faba bean (Vicia faba L.) protein isolates. Food Sci. Biotechnol. 25 (2016), 1513–1522, 10.1007/s10068-016-0235-z.
Skovbjerg, C.K., Knudsen, J.N., Füchtbauer, W., et al. Evaluation of yield, yield stability, and yield–protein relationship in 17 commercial faba bean cultivars. Legume Sci., 2, 2020, e39, 10.1002/leg3.39.
Sluiter, A., Hames, B., Hyman, D., et al., 2008a. Determination of total solids in biomass and total dissolved solids in liquid process samples,.
Sluiter, A., Ruiz, R., Scarlata, C., et al., 2008b. Determination of Ash in Biomass: Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory (NREL),.
Stoddard, F.L., Floral viability and pollen tube growth in Vicia faba L. J. Plant Physiol. 123 (1986), 249–262, 10.1016/S0176-1617(86)80075-X.
Stoddard, F.L., Bond, D.A., The pollination requirements of the faba bean. Bee World 68 (1987), 144–152, 10.1080/0005772X.1987.11098923.
Stoltz, E., Nadeau, E., Wallenhammar, A.-C., Intercropping maize and faba bean for silage under Swedish climate conditions. Agric. Res. 2 (2013), 90–97, 10.1007/s40003-012-0048-0.
Szafirowska, A., The role of cultivars and sowing date in Ccontrol of broad bean weevil (Bruchus rufimanus Boh.) in organic cultivation. Veg. Crops Res. Bull. 77 (2012), 29–36, 10.2478/v10032-012-0013-2.
Titouhi, F., Amri, M., Jemâa, J.M.B., Status of coleopteran insects infesting faba bean in Tunisia with emphasis on population dynamics and damage of Bruchus rufimanus (Chrysomylidae). Basic Res. J. Agric. Sci. Rev. 4 (2015), 225–233.
Tran, B., Huignard, J., Interactions between photoperiod and food affect the termination of reproductive diapause in Bruchus rufimanus (Boh.), (Coleoptera, Bruchidae). J. Insect Physiol. 38 (1992), 633–642.
Traore A and Simmen M (2021) Legume based value chains, farm gate and the market beyond. Quality management of grain legumes.
Vioque, J., Alaiz, M., Girón-Calle, J., Nutritional and functional properties of Vicia faba protein isolates and related fractions. Food Chem. 132 (2012), 67–72, 10.1016/j.foodchem.2011.10.033.
Ward, R.L., 2018. The Biology and Ecology of Bruchus rufimanus (bean seed beetle) (Thesis). Newcastle University.
Warsame, A.O., O'Sullivan, D.M., Tosi, P., Seed storage proteins of faba bean (Vicia faba L): current status and prospects for genetic improvement. J. Agric. Food Chem. 66 (2018), 12617–12626, 10.1021/acs.jafc.8b04992.
Wongsiri, S., Ohshima, T., Duangmal, K., Chemical composition, amino acid profile and antioxidant activities of germinated mung beans (Vigna radiata). J. Food Process. Preserv. 39 (2015), 1956–1964, 10.1111/jfpp.12434.
Zampetti, M.F., Ricci, M.S., 2012. Guida ai coleotteri bruchidi della fauna italiana. Sistematica e biologia, gestione e controllo. Darwin Edizioni.
Zhang, Y.Y., Stockmann, R., Ng, K., Ajlouni, S., Revisiting phytate-element interactions: implications for iron, zinc and calcium bioavailability, with emphasis on legumes. Crit. Rev. Food Sci. Nutr., 2020, 1–17, 10.1080/10408398.2020.1846014.
Zhao, X., Huang, L., Kang, L., Jetter, R., Yao, L., Li, Y., Xiao, Y., Wang, D., Xiao, Q., Ni, Y., Guo, Y., Comparative analyses of cuticular waxes on various organs of faba bean (Vicia faba L.). Plant Physiol. Biochem. 139 (2019), 102–112, 10.1016/j.plaphy.2019.03.015.