[en] High throughput sequencing could become a powerful tool in food safety. This study was the first to investigate artisanal cheeses from Belgium (31 batches) using metagenetics, in relation to Listeria monocytogenes growth data acquired during a previous project. Five cheese types were considered, namely unripened acid-curd cheeses, smear- and mold-ripened soft cheeses, and Gouda-type and Saint-Paulin-type cheeses. Each batch was analyzed in triplicate the first and the last days of storage at 8 °C. Globally, 2697 OTUs belonging to 277 genera and to 15 phyla were identified. Lactococcus was dominant in all types, but Streptococcus was co-dominant in smear-ripened soft cheeses and Saint-Paulin-type cheeses. The dominant population was not always associated with added starter cultures. Bacterial richness and diversity were significantly higher in both types of soft cheeses than in other categories, including particular genera like Prevotella, Faecalibacterium and Hafnia-Obesumbacterium in mold-ripened cheeses and Brevibacterium, Brachybacterium, Microbacterium, Bacteroides, Corynebacterium, Marinilactibacillus, Fusobacterium, Halomonas and Psychrobacter in smear-ripened soft cheeses. A strong correlation was observed between no growth of L. monocytogenes in a smear-ripened cheese and the presence of an unknown Fusobacterium (relative abundance around 10%). This in silico correlation should be confirmed by further experiments in vitro and in situ.
Disciplines :
Microbiology
Author, co-author :
Gerard, Amaury ; Université de Liège - ULiège > Département GxABT > Chimie des agro-biosystèmes
Aldrete-Tapia, A., Escobar Ramirez, C.M., Tamplin, M.L., Hernandez-Ituriaga, M., Characterization of bacterial communities in Mexican artisanal raw milk “Bola de Ocosingo” cheese by high-throughput sequencing. Front. Microbiol., 9, 2018, 2598, 10.3389/fmicb.2018.02598.
Afshari, R., Pillidge, C.J., Dias, D.A., Osborn, A.M., Gill, H., Cheesomics: the future pathway to understanding cheese flavor and quality. Crit. Rev. Food Sci. 60 (2020), 33–47, 10.1080/10408398.2018.1512471.
Barthelemy, R., Sperat-Czar, A., Cheeses of the World. 2001, Hachette Pratique, Paris, France.
Bozoudi, D., Torriani, S., Zdraas, A., Litopoulou-Tzanetaki, E., Assessment of microbial diversity of the dominant microbiota in fresh and mature PDO Feta cheese made at three mountainous areas of Greece. LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.) 72 (2016), 525–533, 10.1016/j.lwt.2016.04.039.
Castellanos-Rozo, J., Pulido, R.P., Grande, M.J., Galvez, A., Analysis of the bacterial diversity of Paipa cheese (a traditional raw cow's milk cheese from Colombia) by high-throughput sequencing. Microorganisms, 8, 2020, 10.3390/microorganisms8020218.
Ceugniez, A., Taminiau, B., Coucheney, F., Jacques, P., Delcenserie, V., Daube, G., Drider, D., Use of a metagenetic approach to monitor the bacterial microbiota of « Tommes d'Orchies » cheese during the ripening process. Int. J. Food Microbiol. 247 (2017), 65–69, 10.1016/j.ijfoodmicro.2016.10.034.
Choi, J., Lee, S.I., Rackerby, B., Frojen, R., Goddik, L., Ha, D.D., Park, S.H., Assessment of overall microbial community shift during Cheddar cheese production from raw milk to aging. Appl. Microbiol. Biotechnol. 104 (2020), 6249–6260, 10.1007/s00253-020-10651-7.
Delcenserie, V., Taminiau, B., Gavini, F., de Schaetzen, M.A., Cleenwerck, I., Theves, M., Mahieu, M., Daube, G., Detection and characterization of Bifidobacterium crudilactis and B. mongoliense able to grow during the manufacturing process of French raw milk cheeses. BMC Microbiol., 13, 2013, 239, 10.1186/1471-2180-13-239.
Delcenserie, V., Taminiau, B., Delhalle, L., Nezer, C., Doyen, P., Crevecoeur, S., Roussey, D., Korsak, N., Daube, G., Microbiota characterization of a Belgian protected designation of origin cheese, Herve cheese, using metagenomic analysis. J. Dairy Sci. 97 (2014), 6046–6056, 10.3168/jds.2014-8225.
Demers-Mathieu, V., St-Gelais, D., Audy, J., Laurin, E., Fliss, I., Effect of the low-fat Cheddar cheese manufacturing process on the viability of Bifidobacterium animalis subsp. lactis, Lactobacillus rhamnosus, Lactobacillus paracasei/casei, and Lactobacillus plantarum isolates. J. Funct. Food 24 (2016), 327–337, 10.1016/j.jff.2016.04.025.
Dugat-Bony, E., Garnier, L., Denonfoux, J., Ferreira, S., Sarthou, A.S., Bonnarme, P., Irlinger, F., Highlighting the microbial diversity of 12 French cheese varieties. Int. J. Food Microbiol. 238 (2016), 265–273, 10.1016/j.ijfoodmicro.2016.09.026.
EURL, Lm, EURL Lm technical guidance document for conducting shelf-life studies on Listeria monocytogenes in ready-to-eat foods. https://ec.europa.eu/food/sites/food/files/safety/docs/biosafety_fh_mc_tech-guide-doc_listeria-in-rte-foods_en.pdf, 2014.
Falardeau, J., Keeney, K., Trmcic, A., Kitts, D., Wang, S., Farm-to-fork profiling of bacterial communities associated with an artisan cheese production facility. Food Microbiol. 83 (2019), 48–58, 10.1016/j.fm.2019.04.002.
Fox, P.F., Guinee, T.P., Cogan, T.M., McSweeney, P.L.H., Fundamentals of Cheese Science. second ed., 2017, Springer, New York, USA.
Frétin, M., Martin, B., Rifa, E., Verdier-Metz, I., Pomiès, D., Ferlay, A., Montel, M.C., Delbès, C., Bacterial community assembly from cow teat skin to ripened cheeses is influences by grazing systems. Sci. Rep., 8, 2018, 200, 10.1038/s41598-017-18447-y.
Gérard, A., El-Hajjaji, S., Niyonzima, E., Daube, G., Sindic, M., Prevalence and survival of Listeria monocytogenes in various types of cheese – a review. Int. J. Dairy Technol. 71 (2018), 825–843, 10.1111/1471-0307.12552.
Gérard, A., El-Hajjaji, S., Van Coillie, E., Bentaib, A., Daube, G., Sindic, M., Determination of the growth potential of Listeria monocytogenes in various types of Belgian artisanal cheeses by challenge tests. Food Microbiol., 92, 2020, 103582, 10.1016/j.fm.2020.103582.
Gérard, A., El-Hajjaji, S., Van Coillie, E., Bentaib, A., Daube, G., Sindic, M., Survey on the prevalence of Listeria monocytogenes in Belgian artisanal cheeses. Biotechnol. Agron. Soc. Environ. 24 (2020), 156–162, 10.25518/1780-4507.18591.
Gobbetti, M., Di Cagno, R., Calasso, M., Neviani, E., Fox, P.F., De Angelis, M., Drivers that establish and assembly the lactic acid bacteria biota in cheeses. Trends Food Sci. Technol. 78 (2018), 244–254, 10.1016/j.tifs.2018.06.010.
Gobbetti, M., Neviani, E., Fox, P., The Cheeses of Italy: Science and Technology. 2018, Springer, New York, USA.
International Organization for Standardization. Microbiology of Food and Animal Feeding Stuffs – Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria Colony-count Technique at 30 Degrees C. 1998.
International Organization for Standardization. ISO 4833-1:2013 Microbiology of the Food Chain – Horizontal Method for the Enumeration of Microorganisms – Part 1: Colony Count at 30 °C by the Pour Plate Technique. 2013.
Irlinger, F., Layec, S., Hélinck, S., Dugat-Bony, E., Cheese rind microbial communities: diversity, composition and origin. FEMS Microbiol. Lett. 362 (2015), 1–11, 10.1093/femsle/fnu015.
Jagadeesan, B., Gerner-Smidt, P., Allard, M.W., Leuillet, S., Winkler, A., Xiao, Y., Chaffron, S., Van Der Vossen, J., Tang, S., Katase, M., McClure, P., Kimura, B., Chai, L.C., Chapman, J., Grand, K., The use of next generation sequencing for improving food safety: translation into practice. Food Microbiol. 79 (2019), 96–115, 10.1016/j.fm.2018.11.005.
Kamimura, B.A., Cabral, L., Noronha, M.F., Baptista, R.C., Nascimento, H.M., Sant'Ana, A.S., Amplicon sequencing reveals the bacterial diversity in milk, dairy premises and Serra da Canastra artisanal cheeses produced by three different farms. Food Microbiol., 89, 2020, 103453, 10.1016/j.fm.2020.103453.
Lahou, E., Uyttendaele, M., Growth potential of Listeria monocytogenes in soft, semi-soft and semi-hard artisanal cheeses after post-processing contamination in deli retail establishments. Food Contr. 76 (2017), 13–23, 10.1016/j.foodcont.2016.12.033.
Marino, M., Dubsky de Wittenau, G., Saccà, E., Cattonaro, F., Spadotto, A., Innocente, N., Radovic, S., Piasentier, E., Marroni, F., Metagenomic profile of different types of Italien high-moisture Mozzarella cheese. Food Microbiol. 79 (2019), 123–131, 10.1016/j.fm.2018.12.007.
Martinez-Rios, V., Dalgaard, P., Prevalence of Listeria monocytogenes in European cheeses: a systematic review and meta-analysis. Food Contr. 84 (2018), 205–214, 10.1016/j.foodcont.2017.07.020.
Milani, C., Duranti, S., Napoli, S., Alessandri, G., Mancabelli, L., Anzalone, R., Longhi, G., Viappiani, A., Mangifesta, M., Lugli, G.A., Bernasconi, S., Ossiprandi, M.C., van Sinderen, D., Ventura, M., Turroni, F., Colonization of the human gut by bovine bacteria present in Parmesan cheese. Nat. Commun., 10, 2019, 1286, 10.1038/s41467-019-09303-w.
Nalepa, B., Ciesielski, S., Aljewicz, M., The microbiota of Edam cheeses determined by cultivation and high-throughput sequencing of the 16S rRNA amplicon. Appl. Sci., 10, 2020, 4063, 10.3390/app10124063.
Oh, N.S., Joung, J.Y., Kim, S.H., Kim, Y., Characterization of the microbial diversity and chemical composition of Gouda cheese made by potential probiotic strains as an adjunct culture. J. Agric. Food Chem. 64 (2016), 7357–7366.
Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., vegan: community ecology package. 2019.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glockner, F.O., The SILVA ribosomal RNA gene database project: improve data processing and web-based tools. Nucleic Acids Res. 41 (2013), D590–D596, 10.1093/nar/gks1219.
Quigley, L., O'Sullivan, O., Beresford, T.P., Ross, R.P., Fitzgerald, G.F., Cotter, P.D., High-throughput sequencing for detection of subpopulations of bacteria not previously associated with artisanal cheeses. Appl. Environ. Microbiol. 78 (2012), 5717–5723, 10.1128/AEM.00918-12.
Quijada, N., Mann, E., Wagner, M., Rodriguez-Lazaro, D., Hernandez, M., Schmitz-Esser, S., Autochtonous facility-specific microbiota dominates washed-rind Austrian hard cheese surfaces and its production environment. Int. J. Food Microbiol. 267 (2018), 54–61, 10.1016/j.ijfoodmicro.2017.12.025.
Rognes, T., Flouri, T., Nichols, B., Quince, C., Mahé, F., VSEARCH: a verstalile open source tool for metagenomics. PeerJ, 4, 2016, e2584, 10.7717/peerj.2584.
Roth, E., Schwenninger, S.M., Eugster-Meier, E., Lacroix, C., Facultative anaerobic halophilic and alkaliphilic bacteria isolated from a natural smear ecosystem inhibit Listeria growth in early ripening stages. Int. J. Food Microbiol. 147 (2011), 26–32, 10.1016/j.ijfoodmicro.2011.02.032.
RStudio Team. RStudio. 2020, integrated development for R. RStudio, Boston, USA.
Salazar, J.K., Carstens, C.K., Ramachandran, P., Shazer, A.G., Narula, S.S., Reed, E., Ottesen, A., Schill, K.M., Metagenomics of pasteurized and unpasteurized gouda cheese using targeted 16S rDNA sequencing. BMC Microbiol., 19, 2018, 189, 10.1186/s12866-018-1323-4.
Schön, K., Schornsteiner, E., Dzieciol, M., Wagner, M., Müller, M., Schmitz-Esser, S., Microbial communities in dairy processing environment floor-drains are dominated by product-associated bacteria and yeasts. Food Contr. 70 (2016), 210–215, 10.1016/j.foodcont.2016.05.057.
Tan, H., Zhai, Q., Chen, W., Investigations of Bacteroides spp. towards next-generation probiotics. Food Res. Int. 116 (2019), 637–644, 10.1016/j.foodres.2018.08.088.
Tilocca, B., Costanzo, N., Morittu, V.M., Spina, A.A., Soggiu, A., Britti, D., Roncada, P., Piras, C., Milk microbiota: characterization methods and role in cheese production. J. Proteomics, 210, 2020, 10354, 10.1016/j.jprot.2019.103534.
Turbes, G., Linscott, T.D., Tomasino, E., Waite-Cusic, J., Lim, J., Meunier-Goddik, L., Evidence of terroir in milk sourcing and its influence on Cheddar cheese. J. Dairy Sci. 99 (2016), 5093–5103, 10.3168/jds.2015-10287.
Vladimir, D., Miloslava, K., Markéta, M., Jaroslava, H., Petr, R., Microbial diversity of Livanjski cheese with the emphasis on lactic acid bacteria based on culture-dependent and sequencing method. Int. J. Dairy Technol. 73 (2020), 202–214, 10.1111/1471-0307.12638.
Wei, L., Rubinstein, R.J., Hanlon, K.M., Wade, H., Peterson, C.N., Klepac-Ceraj, V., Cutting wedge: bacterial community diversity and structure associated with the cheese rind and curd of seven natural rind cheeses. Fine Focus 3 (2016), 9–31.
Weimer, B.C., Storey, D.B., Elkins, C.A., Baker, R.C., Markwell, P., Chambliss, D.D., Edlund, S.B., Kaufman, J.H., Defining the food microbiome for authentication, safety, and process management. IBM J. Res. Dev., 60, 2016, 10.1147/JRD.2016.2582598 Paper 1.
Wickham, H., ggplot2: Elegant Graphics for Data Analysis. 2016, Springer, New York, USA.
Wolfe, B.E., Button, J.E., Santarelli, M., Dutton, R.J., Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity. Cell 158 (2014), 422–433, 10.1016/j.cell.2014.05.041.
Xue, J., Yang, Y., Wang, Z., Goe, Y., Shao, Y., Bacterial diversity in Chinese Rushan cheese from different geographical origins. Front. Microbiol., 9, 2018, 1920, 10.3389/fmicb.2018.01920.
Yoon, Y., Lee, S., Choi, K.H., Microbial benefits and risks of raw milk cheese. Food Contr. 63 (2016), 201–215, 10.1016/j.foodcont.2015.11.013.
Yue, J.C., Clayton, M.K., A similarity measure based on species proportions. Commun. Stat. A-Theor. 34 (2005), 2123–2131, 10.1080/STA-200066418.
Yunita, D., Dodd, C.E.R., Microbial community dynamics of a blue-veined raw milk cheese from the United Kingdom. J. Dairy Sci. 101 (2018), 4923–4935, 10.3168/jds.2017-14104.
Zheng, J., Wittouck, S., Salvetti, E., Franz, C.M.A.P., Harris, H.M.B., Mattarelli, P., O'Toole, P.W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G.E., Gänzle, M.G., Lebeer, S., A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 70 (2020), 2782–2858, 10.1099/ijsem.0.004107.