bacterial resistance; dinuclear zinc enzymes; beta-lactamase family
Abstract :
[en] The metallo-beta-lactamase BcII from Bacillus cereus 569/H/9 possesses a binuclear zinc centre. The mono-zinc form of the enzyme displays an appreciably high activity. although full efficiency is observed for the di-zinc enzyme. In an attempt to assign the involvement of the different zinc ligands in the catalytic properties of BcII, individual substitutions of selected amino acids were generated. With the exception of His(116) --> Ser (H116S), C221A and C221S, the mono- and di-zinc forms of all the other mutants were poorly active. The activity of H116S decreases by a factor of 10 when compared with the wild type. The catalytic efficiency of C221A and C221S was zinc-dependent. The monozinc forms of these mutants exhibited a low activity, whereas the catalytic efficiency of their respective di-zinc forms was comparable with that of the wild type. Surprisingly, the zinc contents of the mutants and the wild-type Bell were similar. These data suggest that the affinity of the beta-lactamase for the metal was not affected by the substitution of the ligand. The pH-dependence of the H196S catalytic efficiency indicates that the zinc ions participate in the hydrolysis of the beta-lactam ring by acting as a Lewis acid. The zinc ions activate the catalytic water molecule, but also polarize the carbonyl bond of the beta-lactam ring and stabilize the development of a negative charge on the carbonyl oxygen of the tetrahedral reaction intermediate. Our studies also demonstrate that Asn(233) is not directly involved in the interaction with the substrates.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
De Seny, Dominique ; Centre Hospitalier Universitaire de Liège - CHU > Rhumatologie
Prosperi, Christelle ; Université de Liège - ULiège > Département de physique > Département de physique
Bebrone, Carine ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Rossolini, G. M.
Page, M. I.
Noel, P.
Frère, Jean-Marie ; Université de Liège - ULiège > Département des sciences de la vie > Département des sciences de la vie
Galleni, Moreno ; Université de Liège - ULiège > Département des sciences de la vie > Macromolécules biologiques
Language :
English
Title :
Mutational analysis of the two zinc-binding sites of the Bacillus cereus 569/H/9 metallo-beta-lactamase
Hussain M., Carlino A., Madonna M.J., Lampen J.O. (1985) Cloning and sequencing of the metallothioprotein beta-lactamase II gene of Bacillus cereus 569/H in Escherichia coli. J. Bacteriol. 164:223-229.
Rasmussen B.A., Gluzman Y., Tally F.P. (1990) Cloning and sequencing of the class B beta-lactamase gene (ccrA) from Bacteroides fragilis TAL3636. Antimicrob. Agents Chemother. 34:1590-1592.
Yang Y., Rasmussen B.A., Bush K. (1992) Biochemical characterization of the metallo-beta-lactamase CcrA from Bacteroides fragilis TAL3636. Antimicrob. Agents Chemother. 36:1155-1157.
Laraki N., Franceschini N., Rossolini G.M., Santucci P., Meunier C., De Pauw E., Amicosante G., Frère J.M., Galleni M. (1999) Biochemical characterization of the Pseudomonas aeruginosa 101/1477 metallo-beta-lactamase IMP-1 produced by Escherichia coli. Antimicrob. Agents Chemother. 43:902-906.
Laraki N., Galleni M., Thamm I., Riccio M.L., Amicosante G., Frère J.M., Rossolini G.M. (1999) Structure of In31, a blaIMP-containing Pseudomonas aeruginosa integron phyletically related to In5, which carries an unusual array of gene cassettes. Antimicrob. Agents Chemother. 43:890-901.
Senda K., Arakawa Y., Nakashima K., Ito H., Ichiyama S., Shimokata K., Kato N., Ohta M. (1996) Multifocal outbreaks of metallo-beta-lactamase-producing Pseudomonas aeruginosa resistant to broad-spectrum beta-lactams, including carbapenems. Antimicrob. Agents Chemother. 40:349-353.
Senda K., Arakawa Y., Ichiyama S., Nakashima K., Ito H., Ohsuka S., Shimokata K., Kato N., Ohta M. (1996) PCR detection of metallo-beta-lactamase gene (blaIMP) in Gram-negative rods resistant to broad-spectrum beta-lactams. J. Clin. Microbiol. 34:2909-2913.
Carfi A., Duée E., Galleni M., Frère J.-M., Dideberg O. (1998) 1.85 Å resolution structure of the zinc (II) beta-lactamase from Bacillus cereus. Acta Crystallogr. Ser. D 54:313-323.
Concha N.O., Rasmussen B.A., Bush K., Herzberg O. (1996) Crystal structure of the wide-spectrum binuclear zinc beta-lactamase from Bacteroides fragilis. Structure 4:823-836.
Concha N.O., Janson C.A., Rowling P., Pearson S., Cheever C.A., Clarke B.P., Lewis C., Galleni M., Frère J.M., Payne D.J., Bateson J.H., Abdel-Meguid S.S. (2000) Crystal structure of the IMP-1 metallo beta-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor: Binding determinants of a potent, broad-spectrum inhibitor. Biochemistry 39:4288-4298.
Carfi A., Pares S., Duée E., Galleni M., Duez C., Frère J.M., Dideberg O. (1995) The 3-D structure of a zinc metallo-beta-lactamase from Bacillus cereus reveals a new type of protein fold. EMBO J. 14:4914-4921.
Paul-Soto R., Bauer R., Frère J.M., Galleni M., Meyer-Klaucke W., Nolting H., Rossolini G.M., De Seny D., Hernandez-Valladares M., Zeppezauer M., Adolph H.W. (1999) Mono- and binuclear Zn2+-beta-lactamase. Role of the conserved cysteine in the catalytic mechanism. J. Biol. Chem. 274:13242-13249.
Baldwin G.S., Galdes A., Hill H.A.O., Smith B.E., Waley S.G., Abraham E.P. (1978) Histidine residues of zinc ligands in beta-lactamase II. Biochem. J. 175:441-447.
Crowder M.W., Wang Z., Franklin S.L., Zovinka E.P., Benkovic S.J. (1996) Characterization of the metal-binding sites of the beta-lactamase from Bacteroides fragilis. Biochemistry 35:12126-12132.
Bicknell R., Waley S.G. (1985) Cryoenzymology of Bacillus cereus beta-lactamase II. Biochemistry 24:6876-6887.
Bicknell R., Schaffer A., Waley S.G., Auld D.S. (1986) Changes in the coordination geometry of the active-site metal during catalysis of benzylpenicillin hydrolysis by Bacillus cereus beta-lactamase II. Biochemistry 25:7208-7215.
Bounaga S., Laws A.P., Galleni M., Page M.I. (1998) The mechanism of catalysis and the inhibition of the Bacillus cereus zinc-dependent beta-lactamase. Biochem. J. 331:703-711.
Wang Z., Fast W., Benkovic S.J. (1999) On the mechanism of the metallo-beta-lactamase from Bacteroides fragilis. Biochemistry 38:10013-10023.
Murphy B.P., Pratt R.F. (1989) Evidence for an oxyanion hole in serine beta-lactamases and oo-peptidases. Biochem. J. 258:765-768.
Sutton B.J., Artymiuk P.J., Cordero-Borboa A.E., Little C., Phillips D.C., Waley S.G. (1987) An X-ray-crystallographic study of beta-lactamase II from Bacillus cereus at 0.35 nm resolution. Biochem. J. 248:181-188.
Lim H.M., Iyer R.K., Pène J.J. (1991) Site-directed mutagenesis of dicarboxylic acids near the active site of Bacillus cereus 5/B/6 beta-lactamase II. Biochem. J. 276:401-404.
Lim H.M., Pène J.J. (1989) Mutations affecting the catalytic activity of Bacillus cereus 5/B/6 beta-lactamase II. J. Biol. Chem. 264:11682-11687.
De Meester F., Boris B., Reckinger G., Bellefroid-Bourguignon C., Frère J.M., Waley S.G. (1987) Automated analysis of enzyme inactivation phenomena. Application to beta-lactamases and oo-peptidases. Biochem. Pharmacol. 36:2393-2403.
Yang Y., Keeney D., Tang X., Canfield N., Rasmussen B.A. (1999) Kinetic properties and metal content of the metallo-beta-lactamase CcrA harboring selective amino acid substitutions. J. Biol. Chem. 274:15706-15711.
Haruta S., Yamaguchi H., Yamamoto E.T., Eriguchi Y., Nukaga M., O'Hara K., Sawal T. (2000) Functional analysis of the active site of a metallo-beta-lactamase proliferating in Japan. Antimicrob. Agents Chemother. 44:2304-2309.
Chantalat L., Duée E., Galleni M., Frère J.-M., Dideberg O. (2000) Structural effects of the active site mutation cysteine to serine in Bacillus cereus zinc-beta-lactamase. Protein Sci. 9:1402-1406.
Yanchak M.P., Taylor R.A., Crowder M.W. (2000) Mutational analysis of metallo-beta-lactamase CcrA from Bacteroides fragilis. Biochemistry 39:11330-11339.
Kiefer L.L., Fierke C.A. (1994) Functional characterization of human carbonic anhydrase II variants with altered zinc binding sites. Biochemistry 33:15233-15240.
Chevrier B., D'Orchymont H., Schalk C., Tarnus C., Moras D. (1996) The structure of the Aeromonas proteolytica aminopeptidase complexed with a hydroxamate inhibitor. Involvement in catalysis of Glu151 and two zinc ions of the cocatalytic unit. Eur. J. Biochem. 237:393-398.
Zang T.M., Hollman D.A., Crawford P.A., Crowder M.W., Makaroff C.A. (2001) Arabidopsis glyoxalase II contains a zinc/iron binuclear metal center that is essential for substrate binding and catalysis. J. Biol. Chem. 276:4788-4795.
De Seny D., Heinz U., Wommer S., Kiefer M., Meyer-Klauck W., Galleni M., Frère J.M., Bauer R., Adolph H.W. (2001) Metal ion binding and coordination geometry for wild type and mutants of metallo-β-lactamase from Bacillus cereus 569/H/9 (BclI): A combined thermodynamic, kinetic, and spectroscopic approach. J. Biol. Chem. 276:45065-45078.