[en] Although commercialized inhibitors of active site serine beta-lactamases are currently used in coadministration with antibiotic therapy, no clinically useful inhibitors of metallo-beta-lactamases (MBLs) have yet been discovered. In this paper, we investigated the inhibitory effect of mercaptophosphonate derivatives against the three subclasses of MBLs (B1, B2, and B3). All 14 tested mercaptophosphonates, with the exception of 1a, behaved as competitive inhibitors for the three subclasses. Apart from 13 and 21, all the mercaptophosphonates tested exhibit a good inhibitory effect on the subclass B2 MBL CphA with low inhibition constants (K(i) < 15 muM). Interestingly, compound 18 turned out to be a potent broad spectrum MBL inhibitor. The crystallographic structures of the CphA-10a and CphA-18 complexes indicated that the sulfur atom of 10a and the phosphonato group of 18 interact with the Zn(2+) ion, respectively. Molecular modeling studies of the interactions between compounds 10a and 18 and the VIM-4 (B1), CphA (B2), and FEZ-1 (B3) enzymes brought to light different binding modes depending on the enzyme and the inhibitor, consistent with the crystallographic structures. [en] In this paper, we investigated the inhibitory effect of mercaptophosphonate derivatives against the three subclasses of MBLs (B1, B2, and B3). All 14 tested mercaptophosphonates, with the exception of one, behaved as competitive inhibitors for the three subclasses.
<br />Apart from two compounds, all the mercaptophosphonates tested exhibit a good inhibitory effect on the subclass B2 MBL CphA with low inhibition constants (Ki<15 μM). Interestingly, compound 18 turned out to be a potent broad spectrum MBL inhibitor.
<br />The crystallographic structures of the CphA-10a and CphA-18 complexes indicated that the sulfur atom of 10a and the phosphonato group of 18 interact with the Zn2þ ion, respectively. Molecular modeling studies of the interactions between two compounds and the VIM-4 (B1), CphA (B2), and FEZ-1 (B3) enzymes brought to light different binding modes depending on the enzyme and the inhibitor, consistent with the crystallographic structures.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Lassaux, Patricia ; Université de Liège - ULiège > Centre d'Ingénierie des Protéines
Hamel, Matthieu; Université de Caen Basse-Normandie > ENSICAEN
Gulea, Mihaela; Université de Caen Basse-Normandie > ENSICAEN
F.R.S.-FNRS - Fonds de la Recherche Scientifique BELSPO - Service Public Fédéral de Programmation Politique scientifique FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture Loterie Nationale Interuniversity Attraction Poles Gouvernement Fédéral Belge FEDER - Fonds Européen de Développement Régional
Ambler, R. P. The structures of beta-lactamases Philos Trans. R. Soc. London, Ser. B 1980, 289, 321-331
Galleni, M.; Lamotte-Brasseur, J.; Rossolini, G. M.; Spencer, J.; Dideberg, O.; Frère, J. M.; The Metallo-β-lactamase Working Group. Standard numbering scheme for class B β-lactamases Antimicrob. Agents Chemother. 2001, 45, 660-663
Garau, G.; Garcia-Saez, I.; Bebrone, C.; Anne, C.; Mercuri, P. S.; Galleni, M.; Frère, J. M.; Dideberg, O. Update of the standard numbering scheme for class B β-lactamases Antimicrob. Agents Chemother. 2004, 48, 2347-2349
Frère, J. M.; Galleni, M.; Bush, K.; Dideberg, O. Is it necessary to change the classification of beta-lactamases? J. Antimicrob. Chemother. 2005, 55, 1051-1052
Bebrone, C. Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily Biochem. Pharmacol. 2007, 74, 1686-1701
Prosperi-Meys, C.; Llabres, G.; de Seny, D.; Soto, R. P.; Valladares, M. H.; Laraki, N.; Frère, J. M.; Galleni, M. Interaction between class B beta-lactamases and suicide substrates of active-site serine beta-lactamases FEBS Lett. 1999, 443, 109-111
Toney, J. H.; Moloughney., J. G. Metallo-beta-lactamase inhibitors: promise for the future? Curr. Opin. Invest. Drugs 2004, 5, 823-826
Mollard, C.; Moali, C.; Papamicael, C.; Damblon, C.; Vessilier, S.; Amicosante, G.; Schofield, C. J.; Galleni, M.; Frère, J. M.; Roberts, G. C. Thiomandelic acid, a broad spectrum inhibitor of zinc beta-lactamases: kinetic and spectroscopic studies J. Biol. Chem. 2001, 276, 45015-45023
Payne, D. J.; Bateson, J. H.; Gasson, B. C.; Proctor, D.; Khushi, T.; Farmer, T. H.; Tolson, D. A.; Bell, D.; Skett, P. W.; Marshall, A. C.; Reid, R.; Ghosez, L.; Combret, Y.; Marchand-Brynaert, J. Inhibition of metallo-beta-lactamases by a series of mercaptoacetic acid thiol ester derivatives Antimicrob. Agents Chemother. 1997, 41, 135-140 (Pubitemid 27000042)
Heinz, U.; Bauer, R.; Wommer, S.; Meyer-Klaucke, W.; Papamichaels, C.; Bateson, J.; Adolph, H. W. Coordination geometries of metal ions in d- or l-captopril-inhibited metallo-beta-lactamases J. Biol. Chem. 2003, 278, 20659-20666
Liénard, B. M. R.; Garau, G.; Horsfall, L.; Karsisiotis, A. I.; Damblon, C.; Lassaux, P.; Papamicael, G.; Roberts, C. K.; Galleni, M.; Dideberg, O.; Frère, J. M.; Schofield, C. J. Structural basis for the broad-spectrum inhibition of metallo-β-lactamases by thiols Org. Biomol. Chem. 2008, 6, 2282-2294
Gulea, M.; Masson, S. Recent Advances in the Chemistry of Difunctionalized Organo-Phosphorus and -Sulfur Compounds. In New Aspects in Phosphorus Chemistry III; Majoral, M., et al., Eds.; Topics in Current Chemistry, Vol. 229; Springer: Berlin, 2003; pp 161 - 198
Gulea, M.; Gaumont, A.-C. Synthesis of Phosphorus-Substituted Sulfur Heterocycles. In Targets in Heterocyclic Systems; Attanasi, O. A.; Spinelli, D., Eds.; Springer and Società Chimica Italiana: New York and Rome, 2008; Vol. 12, pp 328 - 348.
Rahil, J.; Pratt, R. F. Phosphonate monoesters inhibitors of class A beta-lactamases Biochem. J. 1991, 275, 793-795
Li, N.; Rahil, J.; Wright, M. E.; Pratt, R. F. Structure-activity of the inhibition of serine beta-lactamases by phosphonate monoesters Bioorg. Med. Chem. 1997, 5, 1583-1588
Adediran, S. A.; Nukaga, M.; Baurin, S.; Frère, J. M.; Pratt, R. F. Inhibition of class D beta-lactamases by acyl-phosphates and phosphonates Antimicrob. Agents Chemother. 2005, 49, 4410-4419
Myers, J. K.; Antonelli, S. M.; Widlanski, T. S. Motifs for metallophosphatase inhibition J. Am. Chem. Soc. 1997, 119, 3163-3164
Holtz, K. M.; Stec, B.; Myers, J. K.; Antonelli, S. M.; Widlanski, T. S.; Kantrowitz, E. R. Alternate modes of binding in two crystal structures of alkaline phosphatase-inhibitor complexes Protein Sci. 2000, 9, 907-915
Pournaras, S.; Tsakris, A.; Maniati, M.; Tzouvelekis, L. S.; Maniatis, A. N. Novel variant (bla(VIM-4)) of the metallo-beta-lactamase gene bla(VIM-1) in a clinical strain of Pseudomonas aeruginosa Antimicrob. Agents Chemother. 2002, 46, 4026-4028
Massidda, O.; Rossolini, G. M.; Satta, G. The Aeromonas hydrophila cphA gene: molecular heterogeneity among class B metallo-beta-lactamases J. Bacteriol. 1991, 173, 4611-4617
Walsh, T. R.; Hall, L.; Assinder, S. J.; Nichols, W. W.; Cartwright, S. J.; MacGowan, A. P.; Bennett, P. M. Sequence analysis of the L1 metallo-beta-lactamase from Xanthomonas maltophilia Biochim. Biophys. Acta 1994, 1218, 199-201
Toleman, M. A.; Simm, A. M.; Murphy, T. A.; Gales, A. C.; Biedenbach, D. J.; Jones, R. N.; Walsh, T. R. Molecular characterization of SPM-1, a novel metallo-beta-lactamase isolated in Latin America: report from the SENTRY antimicrobial surveillance programme J. Antimicrob. Chemother. 2002, 50, 673-679
Lee, K.; Yum, J. H.; Yong, D.; Lee, H. M.; Kim, H. D.; Docquier, J. D.; Rossolini, G. M.; Chong, Y. Novel acquired metallo-beta-lactamase gene, bla(SIM-1), in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea Antimicrob. Agents Chemother. 2005, 49, 4485-4491
Castanheira, M.; Toleman, M. A.; Jones, R. N.; Schmidt, F. J.; Walsh, T. R. Molecular characterization of a beta-lactamase gene, blaGIM-1, encoding a new subclass of metallo-beta-lactamase Antimicrob. Agents Chemother. 2004, 48, 4654-4661
Osano, E.; Arakawa, Y.; Wacharotayankun, R.; Ohta, M.; Horii, T.; Ito, H.; Yoshimura, F.; Kato, N. Molecular characterization of an enterobacterial metallo-beta-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance Antimicrob. Agents Chemother. 1994, 38, 71-78
Pournaras, S.; Maniati, M.; Petinaki, E.; Tzouvelekis, L. S.; Tsakris, A.; Legakis, N. J.; Maniatis, A. N. Hospital outbreak of multiple clones of Pseudomonas aeruginosa carrying the unrelated metallo-beta-lactamase gene variants blaVIM-2 and blaVIM-4 J. Antimicrob. Chemother. 2003, 51, 1409-1414
Libisch, B.; Gacs, M.; Csiszár, K.; Muzslay, M.; Rókusz, L.; Füzi, M. Isolation of an integron-borne blaVIM-4 type metallo-beta-lactamase gene from a carbapenem-resistant Pseudomonas aeruginosa clinical isolate in Hungary Antimicrob. Agents Chemother. 2004, 48, 3576-3578
Luzzaro, F.; Docquier, J. D.; Colinon, C.; Endimiani, A.; Lombardi, G.; Amicosante, G.; Rossolini, G. M.; Toniolo, A. Emergence in Klebsiella pneumoniae and Enterobacter cloacae clinical isolates of the VIM-4 metallo-beta-lactamase encoded by a conjugative plasmid Antimicrob. Agents Chemother. 2004, 48, 648-650
Giske, C. G.; Rylander, M.; Kronvall, G. VIM-4 in a carbapenem-resistant strain of Pseudomonas aeruginosa isolated in Sweden Antimicrob. Agents Chemother. 2004, 47, 3034-3035
Patzer, J.; Toleman, M. A.; Deshpande, L. M.; Kamińska, W.; Dzierzanowska, D.; Bennett, P. M.; Jones, R. N.; Walsh, T. R. Pseudomonas aeruginosa strains harbouring an unusual blaVIM-4 gene cassette isolated from hospitalized children in Poland (1998-2001) J. Antimicrob. Chemother. 2004, 53, 451-456
Ktari, S.; Arlet, G.; Mnif, B.; Gautier, V.; Mahjoubi, F.; Ben Jmeaa, M.; Bouaziz, M.; Hammami, A. Emergence of multidrug-resistant Klebsiella pneumoniae isolates producing VIM-4 metallo-beta-lactamase, CTX-M-15 extended-spectrum beta-lactamase, and CMY-4 AmpC beta-lactamase in a Tunisian university hospital Antimicrob. Agents Chemother. 2006, 50, 4198-4202
Mercuri, P. S.; Bouillenne, F.; Boschi, L.; Lamotte-Brasseur, J.; Amicosante, G.; Devreese, B.; Van Beeumen, J.; Frère, J. M.; Rossolini, G. M.; Galleni, M. Biochemical characterization of the FEZ-1 metallo-beta-lactamase of Legionella gormanii ATCC 33297T produced in Escherichia coli Antimicrob. Agents Chemother. 2001, 45, 1254-1262
Lu, Y.; Shi, T.; Wang, Y.; Yang, H.; Yan, X.; Luo, X.; Jiang, H.; Zhu, W. Halogen bondings. A novel interaction for rational drug design? J. Med. Chem. 2009, 52, 2854-2862
Abrunhosa, I.; Drabowicz, J.; Grach, G.; Gulea, M.; Hamel, M.; Masson, S.; Mikolajczyk, M.; Vazeux, M. New chiral ortho-P,S-difunctionalized aromatic compounds Phosphorus, Sulfur Silicon Relat. Elem. 2005, 180, 1267-1272
Gulea, M.; Hammerschmidt, F.; Marchand, P.; Masson, S.; Pisljagic, V.; Wuggenig, F. Synthesis of chiral, nonracemic alpha-sulfanylphosphonates and derivatives Tetrahedron: Asymmetry 2003, 14, 1829-1836
McKenna, C. E.; Higa, M. T.; Cheung, N. H.; McKenna, M.-C. The facile dealkylation of phosphonic acid dialkyl esters by bromotrimethylsilane Tetrahedron Lett. 1977, 18, 155-158
Masson, S.; Saint-Clair, J. F.; Saquet, M. Two methods for the synthesis of (2-mercaptophenyl)phosphonic acid Synthesis 1993, 5, 485-486
Masson, S.; Saint-Clair, J. F.; Dore, A.; Saquet, M. Phosphorothioate- mercaptophosphonate rearrangement: synthesis of new o -mercaptoaryl- and o -mercaptoheteroaryl phosphonates and their derivatives Bull. Soc. Chim. Fr. 1996, 133, 951-964
Bebrone, C.; Delbrück, H.; Kupper, M. B.; Schlömer, P.; Willmann, C.; Frère, J. M.; Fischer, R.; Galleni, M.; Hoffmann, K. M. The structure of the dizinc subclass B2 metallo-beta-lactamase CphA reveals that the second inhibitory zinc ion binds in the histidine site Antimicrob. Agents Chemother. 2009, 53, 4464-4471
Garau, G.; Bebrone, C.; Anne, C.; Galleni, M.; Frère, J. M.; Dideberg, O. A Metallo-β-lactamase enzyme in action: crystal structures of the monozinc carbapenemase CphA and its complex with biapenem J. Mol. Biol. 2005, 345, 785-795
Bebrone, C.; Anne, C.; De Vriendt, K.; Devresse, B.; Van Beeumen, J.; Frère, J. M.; Galleni., M. Dramatic broadening of the substrate profile of the Aeromonas hydrophila CphA metallo-β-lactamase by site-directed mutagenesis J. Biol. Chem. 2005, 17, 180-188
Damblon, C.; Jensen, M.; Ababou, A.; Barsukov, I.; Papamicael, C.; Schofield, C. J.; Olsen, L.; Bauer, R.; Roberts, G. C. The inhibitor thiomandelic acid binds to both metal ions in metallo-beta-lactamase and induces positive cooperativity in metal binding J. Biol. Chem. 2003, 278, 29240-29251
Lassaux, P.; Traoré, D.A.K.; Loisel, E.; Favier, A.; Docquier, J. D.; Frère, J. M.; Ferrer, J. L.; Galleni, M. Biochemical and structural characterization of the subclass B1 metallo-beta-lactamase VIM-4. Unpublished results, 2009.
Garcia-Saez, I.; Mercuri, P. S.; Papamicael, C.; Kahn, R.; Frère, J. M.; Galleni, M.; Rossolini, G. M.; Dideberg, O. Three-dimensional structure of FEZ-1, a monomeric subclass B3 metallo-beta-lactamase from Fluoribacter gormanii, in native form and in complex with d -captopril J. Mol. Biol. 2003, 325, 651-660
Ullah, J. H.; Walsh, T. R.; Taylor, I. A.; Emery, D. C.; Verma, C. S.; Gamblin, S. J.; Spencer, J. The crystal structure of the L1 metallo-β- lactamase from Stenotrophomonas maltophilia at 1.7 Å resolution J. Mol. Biol. 1998, 284, 125-136
Toney, J. H.; Fitzgerald, P. M.; Grover-Sharma, N.; Olson, S. H.; May, W. J.; Sundelof, J. G.; Vanderwall, D. E.; Cleary, K. A.; Grant, S. K.; Wu, J. K.; Kozarich, J. W.; Pompliano, D. L.; Hammond, G. G. Antibiotic sensitization using biphenyl tetrazoles as potent inhibitors of Bacteroides fragilis metallo-beta-lactamase Chem Biol. 1998, 5, 185-196
Scrofani, S. D.; Chung, J.; Huntley, J. J.; Benkovic, S. J.; Wright, P. E.; Dyson, H. J. NMR characterization of the metallo-beta-lactamase from Bacteroides fragilis and its interaction with a tight-binding inhibitor: role of an active-site loop Biochemistry 1999, 38, 14507-14514
Toney, J. H.; Hammond, G. G.; Fitzgerald, P. M.; Sharma, N.; Balkovec, J. M.; Rouen, G. P.; Olson, S. H.; Hammond, M. L.; Greenlee, M. L.; Gao, Y. D. Succinic acids as potent inhibitors of plasmid-borne IMP-1 metallo-beta- lactamase J. Biol. Chem. 2001, 276, 31913-31918
Minond, D.; Saldanha, S. A.; Subramaniam, P.; Spaargaren, M.; Spicer, T.; Fotsing, J. R.; Weide, T.; Fokin, V. V.; Sharpless, K. B.; Galleni, M.; Bebrone, C.; Lassaux, P.; Hodder, P. Inhibitors of VIM-2 by screening pharmacologically active and click-chemistry compound libraries Bioorg. Med. Chem. 2009, 17, 5027-5037
Horsfall, L. E.; Garau, G.; Liénard, B. M.; Dideberg, O.; Schofield, C. J.; Frère, J. M.; Galleni, M. Competitive inhibitors of the CphA metallo-β-lactamase from Aeromonas hydrophila Antimicrob. Agents Chemother. 2007, 51, 2136-2142
Derewenda, Z. S.; Lee, L.; Derewenda, U. The occurrence of C-H⋯O hydrogen bonds in proteins J. Mol. Biol. 1995, 252, 248-262
Crowder, M. W.; Walsh, T. R.; Banovic, L.; Pettit, M.; Spencer, J. Overexpression, purification, and characterization of the cloned metallo-beta-lactamase L1 from Stenotrophomonas maltophilia Antimicrob. Agents Chemother. 1998, 42, 921-926
Cornish-Bowden, A. Fundamentals of Enzyme Kinetics; Portland Press Ltd.: London, 2001.
Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants J. Appl. Crystallogr. 1993, 26, 795-800
CCP4 suite: programs for protein crystallography. Acta Crystallogr., Sect. D 1994, 50, 760 - 763.
McCoy, A. J.; Grosse-Kunstleve, R. W.; Adams, P. D.; Winn, M. D.; Storoni, L. C.; Read, R. J. Phaser crystallographic software J. Appl. Crystallogr. 2007, 40, 658-674
Perrakis, A.; Morris, R.; Lamzin, V. S. Automated protein model building combined with iterative structure refinement Nat. Struct. Biol. 1999, 6, 458-463
Emsley, P.; Cowtan, K. Coot: model-building tools for molecular graphics Acta Crystallogr. 2004, D60, 2126-2132
Murshudov, G. N.; Vagin, A. A.; Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method Acta Crystallogr. 1997, D53, 240-255
Programs InsightII 2000.3L and Discover; Accelrys Software Inc., www.accelrys.com.
Bebrone, C.; Lassaux, P.; Vercheval, L.; Sohier, J. S.; Jehaes, A.; Sauvage, E.; Galleni, M. Current challenges in antimicrobial chemotherapy: focus on β-lactamase inhibition. Drugs 2010, 70, 651 - 679.
Burkert, U.; Allinger, N. L. Molecular Mechanics; American Chemical Society: Washington, DC, 1982.
Weiner, P. K.; Kollman, P. A. AMBER: assisted model building with energy refinement. A general program for modeling molecules and their interactions J. Comput. Chem. 1981, 2, 287-303
Weiner, S. J.; Kollman, P. A.; Nguyen, D. T.; Case, D. A. An all atom force field for simulations of proteins and nucleic acids J. Comput. Chem. 1986, 7, 230-252
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision B.04; Gaussian, Inc.: Pittsburgh, PA, 2003.
Wallace, A. C.; Laskowski, R. A.; Thornton, J. M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions Protein Eng. 1996, 8, 127-134