Will isomalto-oligosaccharides, a well-established functional food in Asia, break through the European and American market? The status of knowledge on these prebiotics
[en] This critical review article present the current state of knowledge on isomaltooligosaccharides, some well known functional oligosaccharides in Asia, to evaluate their potential as emergent prebiotics in the American and European functional food market. It includes first a unique inventory of the different families of compounds which have been considered as IMO and their specific structure. A description of the different production methods including the involved enzymes and their specific activities, the substrates and the types of IMO produced. Considering the structural complexity of IMO products, specific characterization methods are described as well as purification methods which enable the riddance of digestible oligosaccharides. Finally an extensive review of their techno-functional and nutritional properties enables to place IMO inside the growing prebiotic market. This review is of a particular interest considering that IMO commercialization in America and Europe is a topical subject due to the recent submission, by Bioneutra INC. (Canada), of a novel food file to the UK Food Standards Agency as well as several patents for IMO production.
Deroanne, Claude ; Université de Liège - ULiège > Gembloux Agro-Bio Tech > Gembloux Agro-Bio Tech
Paquot, Michel ; Université de Liège - ULiège > Gembloux Agro-Bio Tech
Language :
English
Title :
Will isomalto-oligosaccharides, a well-established functional food in Asia, break through the European and American market? The status of knowledge on these prebiotics
Publication date :
2011
Journal title :
Critical Reviews in Food Science and Nutrition
ISSN :
1040-8398
eISSN :
1549-7852
Publisher :
Taylor & Francis, Philadelphia, United States - Pennsylvania
Ammeraal, R.N., Delgado, G.A., Tenbarge, F.L., and Friedman, R.B. (1991). High-performance anion-exchange chromatography with pulsed amperometric detection of linear and branched glucose oligosaccharides. Carbohyd Res. 215: 179-192.
Arai, S. (2002). Global view on functional foods: Asian perspectives. Br J Nutr. 88: 139-143.
Argüello-Morales, M.A., Remaud-Simeon, M., Pizzut, S., Sarcabal, P., Willemot, R.M., and Monsan, P. (2000). Sequence analysis of the gene encoding alternansucrase, a sucrose glucosyltransferase from Leuconostoc mesenteroides NRRL B-1355. FEMS Microbiol Lett. 182: 81-85.
Barker, S.A. and Carrington, T.R. (1953). Studies of Aspergillus niger. Part II. Transglycosidation by Aspergillus niger. J Chem Soc. (Lond.) 1953: 3588-3593.
Benson, C.P., Kelly, C.T., and Fogarty, W.M. (1982). Production and quantification of transglucosidase from Aspergillus niger. J Chem Tech Biotechnol. 32: 790-798.
Berensmeier, S. and Buchholz, K. (2004). Separation of isomaltose from high sugar concentrated enzyme reaction mixture by dealuminated β-zeolite. Sep Purif Technol. 38: 129-138.
Berry, J.M. and Dutton, G.G.S. (1974). Synthesis of isomaltose and other α-Dglucopyranosides. Carbohydr Res. 38: 339-345.
Binder, T.P., Côté, G.L., and Robyt, J.F. (1983). Disproportionation reactions catalyzed by Leuconostoc and Streptococcus glucansucrases. Carbohydr Res. 124(2): 275-286.
Boucher, J., Daviaud, D., Siméon-Remaud, M., Carpéné, C., Saulnier-Blache, J.S., Monsan, P., and Valet P. (2003). Effect of non-digestible glucooligosaccharides on glucose sensitivity in high fat diet fed mice. J Physiol Biochem. 59(3): 169-174.
Bouhnik, Y., Raskine, L., Simoneau, G., Vicaut, E., Neut, C., Flourie, B., Brouns, F., and Bornet, F.R. (2004). The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: a double blind, randomized, placebo-controlled, parallel-group, dose-response relation study. Am. J Clin Nutr. 80(6): 1658-1664.
Cai, Y., Liu, J., Shi, Y., Liang, L., and Mou, S. (2005). Determination of several sugars in serum by high-performance anion-exchange chromatography with pulsed amperometric detection J Chrom A, 1085: 98-103.
Cataldi, T.R.I., Campa, C., and De Benedetto, G.E. (2000). Carbohydrate analysis by high-performance anion-exchange chromatography with pulsed amperometric detection: The potential is still growing. Fresenius J Anal Chem. 368: 739-758.
Chaen, H., Nishimoto, T., Nakada, T., Fukuda, S., Kurimoto, M. and Tsujisaka, Y. (2001). Enzymatic synthesis of kojioligosaccharides using kojibiose phosphorylase. J Biosci Bioing. 92(2): 177-182.
Charcosset, C. (2006). Membrane processes in biotechnology: An overview. Biotechnol Adv. 24 (5): 482-492.
Chen, H.-L., Lu, Y.-H., Lin, J.-J., and Ko, L.-Y. (2001). Effects of isomaltooligosaccharides on bowel functions and indicators of nutritional status in constipated elderly men. J Am. Coll. Nutr. 20(1): 44-49.
Chiang, B.L., Sheih, Y.H., Wang, L.H., Liao, C.K., and Gill, H.S. (2000). Enhancing immunity by dietary consumption of a probiotic lactic acid bacterium (Bifidobacterium lactis HN019): optimization and defnition of cellular immune responses. European Journal of Clinical Nutrition 54: 849-855.
Chiba, S., Sam, T., and Shimomura, T. (1973). Substrate specificity of saccharomyces logos α-Glucosidase. Agr Biol. Chem. 37(8): 1831-1836.
Chiba, S. (1988). α-Glucosidases. In: Handbook of Amylases and Related Enzymes. pp. 104-105. The Amylase Research Society of Japan, Ed., Pergamon Press, Oxford, UK.
Chiba, S. (1997). Molecular mechanism in α-glucosidase and glucoamylase. Biosci Biotechnol Biochem. 61: 1233-1239.
Ching-Ching, L., Hsueh-Fang, W., and Sheng-Dun, L. (2008). Effect of Isomalto-oligosaccharide syrup on quality characteristics of sponge cake. Cereal Chem. 85(4): 515-521.
Chung, C.H. (2002). A potential nutraceutical from leuconostoc mesenteroïde B-742 (ATCC 13146); production and properties, PhD thesis, Sejong University.
Chung, C.-H. and Day, D.F. (2004). Efficacy of Leuconostoc mesenteroides (ATCC 13146)
Isomalto-oligosaccharides as a Poultry Prebiotic. Poultry Science 83: 1302-1306.
Conway, P.L. (2001). Prebiotics and human health: The state-of-the-art and future perspectives. Scandinavian J Nutr. 45: 13-21.
Côté, G.L. and Robyt, J.F. (1982). Isolation and partial characterization of an extracellular glucansucrase from Leuconostoc mesenteroides NRRL B-1355 that synthesizes an alternating (1→6), (1→3)-α-D-glucan. Carbohydr Res. 101(1): 57-74.
Côté, G.L. and Tao, B.Y. (1990). Oligosaccharide synthesis by enzymatic transglycosylation. Glycoconjugate J. 7: 145-162.
Côté, G.L., Holt, S.M., and Miller-Fosmore, C. (2003). Prebiotic oligosaccharides via Alternansucrase acceptor reactions. In: Oligosaccharides in Food and Agriculture, vol. 849, pp. 77-89. Eggleston, G. and Côté, G., Eds., ACS Symposium Series, American Chemical Society, Washington DC.
Côté, G.L. and Sheng, S. (2006). Penta-, hexa-, and heptasaccharide acceptor products of alternansucrase. Carbohydr Res. 41(12): 2066-2072.
Crittenden, R.G. and Playne, M.J. (2002). Purification of food-grade oligosaccharides using immobilised cells of Zymomonas mobilis. Appl Microbiol Biotechnol. 58: 297-302.
Crout, D.H. and Vic, G. (1998). Glycosidases and glycosyl transferases in glycoside and oligosaccharide synthesis. Curr Opin. Chem Biol. 2: 98-111.
Delzenne, N. and Williams, C. (2002). Prebiotics and lipid metabolism. Curr Opin. Lipidol. 13: 61-67.
Delzenne, N.M. (2003). Oligosaccharides: State of the art. Proc. Nutr. Soc. 62: 177-182.
Demuth, K., Jordening, H. J., and Buchholz, K. (2002). Oligosaccharide synthesis by dextransucrase: new unconventional acceptors. Carbohyd. Res. 337: 1811-1820.
Djouzi, Z., Andrieux, C., Pelenc, V., Somarriba, S., Popot, F., Paul, F., Monsan, P., and Szylit, O. (1995). Degradation and fermentation of α-glucooligosaccharides by bacterial strains from human colon-in vitro and in vivo studies in gnotobiotic rats. J Appl Bact. 79(2): 117-127.
Djouzi, Z. and Andrieux, C. (1997). Compared effects of three oligosaccharides on metabolism of intestinal microflora in rats inoculated with a human fecal flora. Brit. J Nutr. 78: 313-324.
Dols-Lafargue, M., Remaud-Simeon, M., Willemot, R.M., Vignon, M., and Monsan, P. (1998). Structural characterization of the maltose acceptorproducts synthesized by Leuconostoc mesenteroides NRRL B-1299 dextransucrase. Carbohydr Res. 305: 549-559.
Dols-Lafargue, M., Willemot, R.M., Monsan, P.F., and Remaud-Simeon, M. (2001). Factors affecting alpha-(1-2) glucooligosaccharide synthesis by Leuconostoc mesenteroides NRRL B-1299 dextransucrase. Biotechnol Bioeng. 74 (6): 498-504.
Doudoroff, M., Hassid, W.Z., and Barker, H.A. (1947). The mechanism of action of sucrose phosphorylase as a glucose-transferring enzyme (transglucosidase). J Biol. Chem. 168: 725-32.
Douglas, L.C. and Sanders, M.E. (2008). Probiotics and Prebiotics in Dietetics Practice J Am. Diet. Assoc. 108: 510-521.
Duan, K.J., Sheu, D.C., Lin, M.T., and Hsueh, H.C. (1994). Reactionmechanism of isomalto-oligosaccharides synthesis by α-glucosidase from Aspergillus carbonarious. Biotechnol Lett. 16 (11): 1151-1156.
Duan, K. J., Sheu, D.C., and Lin, C.T. (1995). Transglucosylation of a fungal α-glucosidase. The enzyme properties and correlation of isomaltooligosaccharide production. Ann N Y Acad. Sci. 750: 325-328.
Faijes, M. and Planas, A. (2007). In vitro synthesis of artificial polysaccharides by glycosidases and glycosynthases. Carbohydr Res. 342: 1581-1594.
Fan, J. Q, Kondo, A., Kato, I. and Lee, Y.C. (1994). High-performance liquid chromatography of glycopeptides and oligosaccharides on graphitized carbon columns. Anal Biochem. 219: 224-229.
Fedorak, R.N. and Madsen, K.L. (2004). Probiotics and prebiotics in gastrointestinal disorders. Curr Opin. Gastroenterol. 20: 146-155.
Fernandez-Arrojo, L., Mari{dotless}n, D., Gomez De Segura, A., Linde, D., Alcalde, M., Gutierrez-Alonso, P., Ghazi, I., Plou, F.J., Fernandez-Lobato, M., and Ballesteros, A. (2007). Transformation of maltose into prebiotic isomaltooligosaccharides by a novel a-glucosidase from Xantophyllomyces dendrorhous. Process Biochem. 42: 1530-1536.
Flickinger, E.A., Wolf, B.W., Garleb, K.A., Chow, J., Leyer, G.J., Johns, P.W., and Fahey, G.C. (2000). Glucose-based oligosaccharides exhibit different in vitro fermentation patterns and affect in vivo apparent nutrient digestibility and microbial populations in dogs. J Nutr. 130: 1267-1273.
Fooks L.J., Fuller, R., andGibson, G.R. (1999). Prebiotics, probiotics and human gut microbiology. Int. Dairy J. 9: 53-61.
Frandsen, T.P. and Svensson, B. (1998). Plant α-glucosidases of the glycoside hydrolase family 31. Molecular properties, substrate specificity, reaction mechanism, and comparison with family members of different origin. Plant Mol Biol. 37: 1-13.
Gibson, G.R. and Roberfroid, M.B. (1995). Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. 125: 1401-1412.
Gibson, G.R., Probert, H.M., Van Loo, J., Rastall, R.A. and Roberfroid, M.B. (2004). Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr. Res. Rev. 17: 259-275.
Goffin, D., Robert, C., Wathelet, B., Blecker, C., Malmendier, Y., and Paquot, M. (2009). A Step-forward method of quantitative analysis of enzymatically produced isomaltooligosaccharide preparations by AEC-PAD. Chromatogr. 69: 287-293.
Goffin, D., Paquot, M., Blecker, C., and Robert, C. Process for the production of a composition, the composition and the use there-of as food additive. European Patent No. 09150869.7, submitted in january 2009
Goffin, D., Bystricky, P., Shashkov, A.S., Lynch, M., Hanon, E., Paquot, M., and Savage, A.V. (2009). A systematic NMR determination of α-Dglucooligosaccharides, effect of linkage type, anomeric configuration and combination of different linkages type on 13C chemical shifts for the determination of unknown isomalto-oligosaccharides. Bull. Korean Chem Soc. 30 (11): 2535-2541.
Goffin, D., Karlsson, N.G., Paquot, M., and Savage, A.V. (2009). Structural analysis of α-gluco-oligosaccharides by negative ion, graphitized carbon microliquid chromatography/electrospray ionization mass spectrometry, as a tool to identify unknown Isomalto-oligosaccharides (Under revision).
Goffin, D., Wathelet, B., Blecker, C., Malmendier, Y., Paquot, M. (2010). Comparison of the glucooligosaccharide profiles produced from maltose by two different transglucosidases from Aspergillus niger. BASE.
Goulas, A.K., Grandison, A.S., and Rastall, R.A. (2003). Fractionation of oligosaccharides by Nanofiltration. J Sci. Food Agric., 83: 675-680.
Goulas, A.K., Fisher, D.A., Grimble, G.K., Grandison, A.S., and Rastall, R.A. (2004a). Synthesis of isomalto-oligosaccharides and oligodextrans by the combined use of dextransucrase and dextranase. Enzyme and Microbial Technology 35: 327-338.
Goulas, A.K., Cooper, J.M., Grandison, A.S., and Rastall, R.A. (2004b). Synthesis of isomalto-oligosaccharides and oligodextrans in a recycle membrane bioreactor by the combined use of dextransucrase and dextranase. Biotechnol Bioeng. 88 (6): 778-787.
Grandison, A.S., Goulas, A.K. and Rastall, R.A. (2002). The use of dead-end and cross-flow nanofiltration to purify prebiotic oligosaccharides from reaction mixtures. Songklanakarin J Sci. Technol. 24: 915-928.
Grizard, D. and Barthomeuf, C. (1999). Non-digestible oligosaccharides used as prebiotic agents: mode of production and beneficial effects on animal and human health. Reprod. Nutr. Dev. 39: 563-588.
Gu, Q., Yang, Y., Jiang, G., and Chang, G. (2003). Study on the regulative effect of isomalto-oligosaccharides on human intestinal flora. J Hyg. Res. 32: 54-55.
Guddat, S., Thevis, M., and Schänzer, W. (2005). Identification and quantification of the plasma volume expander dextran in human urine by liquid chromatography-tandem mass spectrometry of enzymatically derived isomaltose. Biomed. Chrom. 19: 743-750.
Hamada, S. and Torii, M. (1980). Interaction of glucosyltransferase from S. mutans with various glucans. J General Microbiol. 116: 51-59.
Hamada, S. (2002). Role of sweeteners in the etiology and prevention of dental caries. Pure Appl Chem. 74(7): 1293-1300.
Hasler, C.M. (1996). Functional foods: The western perspective. Nutr. Rev. 54: 6-10.
Hasler, C.M. (2000). The changing face of functional foods. J Am. Coll. Nutr. 19: 499-506.
Hayakawa, K., Ando, K., Yoshida, N., Yamamoto, A., Matsunaga, A., Nishimura, M., Kitaoka, M., and Matsui, K. (2000). Determination of saccharides in sake by high-performance liquid chromatography with polarized photometric detection. Biomed. Chrom. 14(2): 72-76.
Hino, K., Kurose, M., Sakurai, T., Inoue, S., Oku, K., Chaen, H., Kohno, K., and Fukuda, S. (2006). Effect of dietary cyclic Nigerosylnigerose on intestinal immune functions in mice. Biosci Biotech. Biochem. 70(10): 2481-2487.
Holtkamp, M., Erhardt, F.A., Jördening, H.-J., and Scholl, S. (2008). Reactionintegrated separation of isomaltose by ad-and desorption on zeolite. Chem Eng. Process. 48(4): 852-858.
Imai, S., Takeuchi, K., Shibata, K., Yoshikawa, S., Kitahata, S., Okada, S., Araya, S., and Nishizawa, T. (1984). Screening of sugars inhibitory against sucrosedependent synthesis and adherence of insoluble glucan and acid production by Streptococcus mutans. J Dent. Res. 63: 1293-1297.
Inan, M.S., Rasoulpour, R.J., Yin, L., Hubbard, A.K., Rosenberg, D.W., and Giardina, C. (2000). The luminal short-chain fatty acid butyrate modulates NF-κB activity in a human colonic epithelial cell line. Gastroenterology 118(4): 724-734.
Jahnel, J., Ilieva, P. and Frimmel, F. (1998). HPAE-PAD-a sensitive method for the determination of carbohydrates. Fresenius J Anal Chem. 360: 827-829.
Jeanes, A.R., Haynes, W.C., Wilham, C.A., Rankin, J.C., Melvin, E.H., Austin, M.J., Cluskey, J.E., Fisher, B.E., Tsuchiya, H.M., and Rist C.E. (1954). Characterization and classification of dextrans from ninety six strains of bacteria. J Am. Chem Soc. 76: 5041-5052.
Kaneko, T., Kohmoto, T., Kikuchi, H., Fukui, F., Shiota, M., Yatake, T., Takaku, H., and Iino, H. (1992). Digestibility of isomalto-oligosaccharides by rats and effects on serum lipids. Journal of the Japan Society for Bioscience Biotechnology and Agrochemistry 66(8): 1211-1220.
Kaneko, T., Kohmoto, T, Kikuchi, H., Shiota, M., Iino, H., and Mitsuoka, T. (1994). Effects of isomalto-oligosaccharides with different degrees of polymerization on human fecal bifidobacteria. Biosci Biotechnol Biochem. 58(12): 2288-2290.
Kaneko, T., Yokoyama, A., and Suzuki, M. (1995a). Digestibility characteristics of isomalto-oligosaccharides in comparison with several saccharides using rat jejunum loop method. Biosci Biotechnol Biochem. 59: 1190-1194.
Kaneko, T., Matsukubo, T., Yatake, T., Muramatsu, Y., and Takaesu, Y. (1995b). Evaluation of acidogenicity of commercial isomalto-oligosaccharides mixture and its hydrogenated derivative by measurement of pH responses under human dental plaque. Biosci Biotechnol Biochem. 59: 372-377.
Kanno, T. (1990). Some functional properties of so-called isomaltooligosaccharides and their applications to food industry. Denpun Kagaku 37: 87-97.
Kato, N., Suyama, S., Shirokane, M., Kato, M., Kobayashi, T., and Tsukagoshi, N. (2002). Novel α-Glucosidase from Aspergillus nidulans with strong transglycosylation activity. Appl Environ Microbiol. 68: 1250-1256.
Karlsson, N., Wilson, N., Wirth, H-J., Dawes, P., Joshi, H., and Packer, N.H. (2004). Negative ion graphitised carbon nano-liquid chromatography/mass spectrometry increases sensitivity for glycoprotein oligosaccharide analysis. Rapid Commun. Mass Spectrom. 18: 2282-2292.
Khalikova, E., Susi, P., and Korpela, T. (2005). Microbial dextran-hydrolyzing enzymes: Fundamentals and applications. Microbiol Mol Biol. Rev. 69(2): 306-325
Killey, M., Dimler, R.J., and Cluskey, J.E. (1955). Preparation of panose by the action of NRRL B-512 dextransucrase on a sucrose-maltose mixture. J Am. Chem Soc. 77(12): 3315-3318.
Kim, A.S. and Floch, M.H. (2008). Probiotics in clinical trials from 2004 to 2007: A review of current literature. Gast. 134: 694-694.
Kim, Y.-M., Seo, M.-Y., Kang, H.-K., Atsuo, K., and Kim, D. (2009). Construction of a fusion enzyme of dextransucrase and dextranase: Application for one-step synthesis of isomalto-oligosaccharides. Enz Microb. Technol. 44: 159-164.
Kita, A., Matsui, H., Somoto, A., Kimura, A., Takata, M., and Chiba, S. (1991). Substrate specificity and subsite affinities of crystalline α-glucosidase from Aspergillus niger. Agric Biol Chem. 55: 2327-2335.
Kitahata, S., Brewer, C.F., Genghof, D.S., Sawai, T., and Hehre, E.J. (1981). Scope and mechanism of carbohydrase action stereocomplementary hydrolytic and glucosyl-transfering actions of glucoamylase and glucodextranase with α-and β-D-glucosylfluorides. J Biol. Chem. 256: 6017-6026.
Kitaoka, M. and Robyt, J.F. (1999). Mechanism of the action of Leuconostoc mesenteroides B-512FMC dextransucrase: kinetics of the transfer of Dglucose to maltose and the effects of enzyme and substrate concentrations. Carbohydr Res. 320: 183-191.
Kobayashi, I., Tokuda, M., Hashimoto, H., Konda, T., Nakano, H., and Kitahata, S. (2003). Purification and characterization of a new type of a-glucosidase from Paecilomyces lilacinus that has transglucosylation activity to produce α-(1,3)-and α-(1,2)-linked oligosaccharides, Biosci Biotechnol Biochem. 67: 29-35.
Koepsell, H.J. Tsuchiya, H.M. Hellman, N.N. Kazenko, A., Hoffman, C.A., Sharpe, E.S., and Jackson, R.W. (1953). Enzymatic synthesis of dextran. J Biol. Chem. 200: 793-801.
Koga, T., Horikoshi, T., Fujiwara, T., and Hamada, S. (1988). Effects of panose on glucan synthesis and cellular adherence by Streptococcus mutans. Microbiol Immunol. 32(1): 25-31.
Kohmoto, T., Fukui, F., Takaku, H., Machida, Y., Arai, M., and Mitsuoka, T. (1988). Effect of isomalto-oligosaccharides on human fecal flora. Bifidobacteria Microflora 7: 61-69.
Kohmoto, T., Fukui, F., Takaku, H., and Mitsuoka, T. (1991). Dose-response test of isomalto-oligosaccharides for increasing fecal bifidobacteria. Agric Biol Chem. 55(8): 2157-2159.
Kohmoto, T, Tsuji, K., Kaneko, T., Shiota, M., Fukui, F, Takaku, H, Nakagawa, Y., Ichikawa, T., and Kobayashi, S. (1992). Metabolism of 13C-isomaltooligosaccharides in healthy human. Biosci Biotechnol Biochem. 56(6): 937-940.
Koizumi, K., Kubota, Y., Tanimoto, T., and Fukuda, M. (1989). High performance anion-exchange chromatography of homogeneous D-glucooligosaccharides and poly-saccharides (polymerization degree >50) with pulsed amperometric detection. J Chrom. 464: 365-373.
Koizumi, K., Okada, Y., and Fukuda, M. (1991) High-performance liquid chromatography of mono-and oligo-saccharides on a graphitized carbon column. Carbohydr Res. 215: 67-80.
Koizumi, K. (1996). High-performance liquid chromatographic separation of carbohydrates on graphitized carbon columns. J Chrom A 720: 119-126.
Kolida, S., Tuohy, K., and Gibson, G.R. (2000). The human gut flora in nutrition and approaches for its dietary modulation. British Nutrition Foundation Nutr. Bull. 25: 223-231.
Konishi, Y. and Shindo, K. (1997). Production of nigerose, nigerosylglucose, and nigerosylmaltose by Acremonium sp. S4G13. Biosci Biotechnol Biochem. 61: 439-442.
Kubik, C., Sikora, B., and Bielecki, S. (2004). Immobilization of dextransucrase and its use with soluble dextranase for glucooligosaccharides synthesis. Enzyme and Microbial Technology 34: 555-560.
Kuriki, T., Tsuda, M., and Imanaka, T. (1992). Continuous production of panose by immobilized neopullulanase. J Ferm Bioeng. 73(3): 198-202.
Kuriki, T., Yanase, M., Takata, H, Imanaka, T., and Okadawa, S. (1993a). Highly branched oligosaccharides produced by the transglycosylation reaction of neopullulanase. J Ferm Bioeng. 76(3): 184-190.
Kuriki, T., Yanase, M., Takata, H., Takesada, Y., Imanaka, T., and Okada, S. (1993b). A new way of producing isomalto-oligosaccharide syrup by using the transglycosylation reaction of neopullulanase. Appl Environ. Microbiol. 59: 953-959.
Kuriki, T., Hondoh, H., and Matsuura Y.(2005). The conclusive proof that supports the concept of the α-amylase family: structural similarity and common catalytic mechanism. Biologia, Bratislava, 60 (16): 13-16.
Lamothe, J.P., Marchenay, Y., Monsan, P., Paul, F., and Pelenc, V. (1991). Compositions cosmétiques contenant des glucooligosaccharides. French patent FR 2678166.
Lee, S.-L. and Chen, W.-C. (1997). Optimization ofmedium composition for the production of glucosyltransferase by Aspergillus niger with response surface methodology. Enz Microb. Tech. 21: 436-440.
Lee, M.R., Lee, K.A., and Ly, S.Y. (2003). Improving effects of fructooligosaccharides and isomalto-oligosaccharides contained in sponge cakes on the constipation of female college students. J Korean Soc. Food Sci. Nutr., 32 (4): 621-626.
Li, F., Vadakoot, J., Duan, G., and Shetty, J.K. (2004). Grain compositions containing pre-biotic isomalto-oligosaccharides and methods of making and using same. Genencor International, Inc. World Patent WO 2004/081022.
Li, J., Tan, B., and Mai, K. (2009). Dietary probiotic Bacillus OJ and isomaltooligosaccharides influence the intestine microbial populations, immune responses and resistance to white spot syndrome virus in shrimp (Litopenaeus vannamei). Aquacult. 291: 35-40.
Loo, J.V., Cummings, J., Delzenne, N., Englyst, H., Franck, A., Hopkins, M., Kok, N., Macfarlane, G., Newton, D., Quigley, M., Roberfroid, M., Vliet, T.V., and Heuvel, E. (1999). Functional food properties of non-digestible oligosaccharides: A consensus report from the ENDO project (DGXII AIRIICT94-1095). Brit. J Nutr. 81: 121-132.
Lucas, J. (2002). European Union-funded research on probiotics, prebiotics and new foods. Digest. Liver Dis. 34(2): 98-104.
Macfarlane, S., Macfarlane, G.T., and Cummings, J.H. (2006). Review article: Prebiotics in the gastrointestinal tract. Aliment. Pharmacol. Ther. 24: 701-714.
Mala, S., Dvorakova, H., Hrabal, R., and Kralova, B. (1999). Towards regioselective synthesis of oligosaccharides by use of α-glucosidases with different substrate specificity. Carbohydr Res. 322: 209-218.
Manning, T.S. and Gibson, G.R. (2004). Prebiotics. Best Pract. Res. Clin Gastroenterol. 18(2): 287-298.
McCleary, B. and Gibson, T. (1989). Purification, properties, and industrial significance of transglucosidase from Aspergillus niger. Carbohydr Res. 185: 147-162.
Milner, J.A. (2000). Functional foods: The US perspective. Am. J Clin Nutr. 71: 1654-1659.
Minami, T., Fujiwara, T., Kabawata, S., Izumitani, A., Ooshima, T., Sobue, S., and Hamada, S. (1989). Caries-inducing activity of isomaltooligosugars (IMOs) in vitro and in rat experiment. Shoni Shikagaku Zasshi 27(4): 1010-1017.
Mirmira, S.R., Schreiber, M.A., and Guessford, S.A. (1993). High performance ion chromatographic analysis of glucose, isomaltose, and maltose in hydroxyethyl starch. J. Liq. Chrom Rel. Technologies. 16(12): 2631-2638.
Mizubuchi, H., Yajima, T., Aoi, N., Tomita, T., and Yoshikai, Y. (2005). Isomalto-oligosaccharides polarize Th1-like responses in intestinal and systemic immunity in mice. J Nutr. 135: 2857-2861.
Monchois, V., Willemot, R.-M., and Monsan, P. (1999). Glucansucrases:Mechanism of action and structure-function relationships. FEMS Microbiol Rev. 23: 131-151.
Monsan, P. and Paul, F. (1995). Enzymatic synthesis of oligosaccharides. FEMS Microbiol Rev. 16: 187-192.
Monsan, P., Bozonnet, S., Albenne, C., Joucla, G., Willemot, R.M., and Remaud-Simeon, M. (2001). Homopolysaccharides from lactic acid bacteria. Int. Dairy J 11: 675-685.
Mooser, G. (1992). Glycosidase and glycosyltransferases. In: The Enzymes. Vol. 20, p. 187. Boyer, P.D., Ed., Academic Press, London.
Mountzouris, K.C., Gilmour, S.G., Grandison, A.S., and Rastall, R.A. (1999). Modeling of oligodextran production in an ultrafiltration stirred-cell membrane reactor. Enz Microb Tech 24: 75-85.
Mountzouris, K.C., Gilmour, S.G., and Rastall, R.A. (2002). Continuous production of oligodextrans via controlled hydrolysis of dextran in an enzyme membrane reactor. J Food Sci., 67(5): 1767-1771.
Moynihan, P.J. (1998). Update on the nomenclature of carbohydrates and their dental effects. J Dent. 26(3): 209-218.
Mu, X., Xu, X., Zhong, Z., Zhu, J. and Li, X., and Thompson D. (2005a). A method for the removal of monosaccharide in oligosaccharides production. Canadian Patent CA 2474999.
Mu, X., Zhu, J., Li, X., Xu, X., Zhong, Z., and Thompson, D. (2005b). A method to control the distribution of the starch sugars molecular weight in oligosaccharides production. Canadian Patent CA 2475817.
Mukai, K., Watanabe, H., Kubota, M., Chaen, H., Fukuda, S., and Kurimoto, M. (2005). Purification, characterization, and gene cloning of a novel maltosyltransferase from an arthrobacter globiformis strain that produces an alternating α-(1,4)-and α-(1,6)-Cyclic tetrasaccharide from starch. Appl Environ Microbiol. 72(2): 1065-1071.
Murase, H., Yamauchi, R., Kato, K., Kunieda, T., and Terao, J. (1997). Synthesis of a novel vitamin E derivative, 2-(α-D-glucopyranosyl) methyl-2,5,7,8-tetramethylchroman-6-ol, by α-glucosidase-catalyzed transglycosylation. Lipids 32: 73-78.
Murosaki, S., Muroyama, K., Yamamoto, Y., Kusaka, H., Liu, T., and Yoshikai, Y. (1999). Immunopotentiating activity of nigerooligosaccharides for the T helper 1-like immune response in mice. Biosci Biotechnol Biochem. 63: 373-378.
Murosaki, S., Muroyama, K., Yamamoto, H., Liu, T., and Yoshikai, Y. (2002). Nigerooligosaccharides augments natural killer activity of hepatic mononuclear cells in mice, Int. Immunopharmacol. 2: 151-159.
Mussatto, S.I. and Mancilha, I.M. (2007). Non-digestible oligosaccharides: A review. Carbohyd. Polym. 68: 587-597.
Nakakuki, T. (1993). Oligosaccharides. Production, properties and applications. In: JapaneseTechnology ReviewsVol. 3, No. 2, p. 204-229. Gordon&Breach Science Publishers, Aarborg, Norway.
Nakakuki, T. (2003). Development of functional oligosaccharides in Japan. Trends Glycosci Glycotech. 15: 62-63.
Nakakuki, T. (2005). Present status and future prospects of functional oligosaccharides in Japan. J Appl Glycosci. 52: 267-271.
Nakanishi, K., Matsuno, R., Torii, K., Yamamoto, K., and Kamikubo, T. (1983). Properties of immobilized β-D-galactosidase from Bacillus circulans. Enz Microb Technol. 5: 115-120.
Nakanishi, T., Nomura, S., and Takeda, Y. (2006). An improved method for the quantitative analysis of commercial isomalto-oligosaccharides products using the calibration curve of standard reagents. J Appl Glycosci. 53: 215-222.
Nishimoto, T., Aga, H., Mukai, K., Hashimoto, T., Watanabe, H., Kubota, M., Fukuda, S., Kurimoto, M., and Tsujisaka, Y. (2002). Purification and characterization of glucosyltransferase and Glucanotransferase involved in the production of cyclic tetrasaccharides in Bacillus globisporus C11. Biosci Biotechnol Biochem. 66(9): 1806-1818.
Oguma, T., Tobe, K., and Kobayashi, M. (1994). Purification and properties of a novel enzyme from Bacillus spp. T-3040, which catalyzes the conversion of dextran to cyclic isomalto-oligosaccharides. FEBS Lett. 345: 135-138
Olano-Martin, E., Mountzouris, K.C., Gibson, G.R., and Rastall, R.A. (2000). In vitro fermentability of dextran, oligodextran and maltodextrin by human gut bacteria. Brit J Nutr. 83: 247-255.
Ooshima, T., Fujiwara, T., Takei, T., Izumitani, A., Sobue, S., and Hamada, S. (1988). The caries inhibitory effects of GOS-sugar in vitro and in rat experiments. Microbiol Immunol. 32: 1093-1105.
Ouwehand A.C., Derrien M., de Vos W., Tiihonen K., and Rautonen, N. (2005). Prebiotics and other microbial substrates for gut functionality. Curr Opin Microbiol.16: 212-217.
Palframan, R.J., Gibson, G.R., and Rastall, R.A. (2002). Effect of pH and dose on the growth of gut bacteria on prebiotic carbohydrates in vitro. Anaerobe 8: 287-292.
Palframan, R., Gibson, G.R., and Rastall, R.A. (2003). Development of a quantitative tool for the comparison of the prebiotic effect of dietary oligosaccharides. Lett Appl Microbiol. 37: 281-284.
Pan, S.C., Andreasen, A.A., and Kolachov, P. (1950). Enzymatic conversion of maltose into unfermentable carbohydrate. Science 112: 115-117.
Pan, Y.-C. and Lee, W.-C. (2005). Production of high-purity isomaltooligosaccharides syrup by the enzymatic conversion of transglucosidase and fermentation of yeast cells. Biotechnol Bioeng. 89(7): 797-804.
Pastuch, G., Wandzik, I., and Szeja, W. (2003). Stereoselective one-pot synthesis of isomalto-oligosaccharides. Pol J Chem. 77 (8): 995-999.
Paul, F., Oriol, E., Auriol, D., and Monsan, P. (1986). Acceptor reaction of a highly purified dextran sucrase with maltose and oligosaccharides. Application to the synthesis of controlled-molecular-weight dextrans. Carbohydr Res. 149: 433-441.
Paul, F., Lopez-Munguia, A., Remand, M., Pelenc, V., and Monsan, P. (1992). Procédé de préparation enzymatique d'oligodextranes utiles dans la fabrication de substituts de sucre, et nouveaux oligodextranes. European Patent EP 0325872.
Paul, F., Lopez-Munguia, A., Remaud, M., Pelenc, V., and Monsan, P. (1992). Method for the production of α-(1,2) oligodextrans using Leuconostocmesenteroides B-1299. US Patent 5141858.
Paskach, T., Licker, H.P., Reilly, P.J., and Thielecke, K. (1991). Highperformance anion-exchange chromatography of sugars and sugar alcohols on quaternary ammonium resins under alkaline conditions. Carbohydr Res. 215: 1-14.
Pazur, J.H. and French, D. (1951). The Transglucosidase of Aspergillus oryzae. J Am Chem Soc., 73(7): 3536.
Pazur, J. and French, D. (1952). The action of transglucosidase of Aspergillus oryzae on maltose. J Biol Chem. 196 (1): 265-272.
Pazur, J.H., Cepure, A., Okada, S., and Forsberg, L.S. (1977). Comparison of the action of glucoamylase and glucosyltransferase on D-glucose, maltose, and maltooligosaccharides. Carbohydr Res. 58: 193-202.
Pazur, J.H., Tominaga, Y., DeBrosse, C.W., and Jackman, L. M. (1978). The synthesis of 1,6-anhydro-β-D-glucopyranose and D-glucosyl oligosaccharides from maltose by a fungal glucosyltransferase. Carbohydr Res. 61: 279-290.
Perlné, M.I., Horváth, K., and Katona, Z. (2000). The possibilities of GC/MS and HPLC in the analysis of sugars and acids in naturalmatrices. Acta Pharma Hung. 70(3-6): 231-238.
Perugino, G., Trincone, A., Rossi, M., and Moracci, M. (2004). Oligosaccharide synthesis by glycosynthases. Trends Biotechnol. 22(1): 31-37.
Playne, M.J. and Crittenden, R.G. (2004). Part II Biotechnology strategies for producing specific food ingridents. In: Bioprocesses and Biotechnology for Functional Foods and Nutraceuticals, pp. 120-121, Neeser, J.R. and German, J.B., Eds., CRC Press, Boca Raton, FL.
Plou, F.J., Martín, M.T., Gomez de Segura, A., Alcalde, M., and Ballesteros, A. (2002). Glucosyltransferases acting on starch or sucrose for the synthesis of oligosaccharides. Can J Chem. 80: 743-752.
Plou, F.J., Gomez de Segura, A., and Ballesteros, A. (2007) Application of glycosidases and transglycosidases in the synthesis of oligosaccharides. In: Industrial Enzymes, Chap. 9, pp. 141-157. Polaina, J. and MacCabe, A.P. Eds., Springer, Netherlands.
Pratt, V.C., Tappenden, K.A., McBurney, M.I., and Field, C.J. (1996). Shortchain fatty acid-supplemented total parenteral nutrition improves nonspecific immunity after intestinal resection in rats. J Parenteral Enteral Nutr. 20(4): 264-271.
Rastall, R.A. and Maitin, V. (2002). Prebiotics and synbiotics: Towards the next generation. Curr Opin Biotechnol. 13: 490-496.
Rastall, R.A. and Hotchkiss, A.T. (2003). Potential for the development of prebiotic oligosaccharides from biomass. In: Oligosaccharides in Food and Agriculture. pp. 44-53. Eggleston, G. and Côté, G.L., Eds., ACS Press, Washington, DC.
Rastall, R.A., Gibson, G.R., Harsharnjit, S.G., Guarner, F., Klaenhammer, T.R., Pot, B., Reid, G., Rowland, I.R., and Sanders, M.E. (2005). Modulation of the microbial ecology of the human colon by probiotics, prebiotics and synbiotics to enhance human health: An overview of enabling science and potential applications. FEMS Microbiol Ecol. 52: 145-152.
Rehman, H., Vahjen, W., Kohl-Parisini, A., Ijaz, A., and Zentek, J. (2009) Influence of fermentable carbohydrates on the intestinal bacteria and enteropathogens in broilers. World's Poultry Sci J. 65: 75-90.
Remaud-Simeon, M., Lopez-Munguia, A., Pelec, V., Paul, F. and Monsan, P. (1994). Production and use of glucosyltransferases from Leuconostocmesenteroides NRRL B-1299 for the synthesis of oligosaccharides containing α-(1,2) linkages. Appl Biochem Biotechnol. 44: 101-117.
Remaud-Simeon M., Willemot, R.-M., Sarcabal, P., Potocki de Montalk, G., and Monsan, P. (2000). Glucansucrases: Molecular engineering and oligosaccharide synthesis. J Mol Catal B: Enzym. 10: 117-128.
Roberfroid, M.B. (1997). Health benefits of non-digestible oligosaccharides. In: Dietary Fiber in Health and Disease, pp. 211-219. Kritchevsky and Bonfield, Eds., Plenum Press, New York.
Roberfroid, M. and Slavin, J. (2000). Nondigestible oligosaccharides. Crit. Rev. Food Sci Nutr. 40(6): 461-480.
Roberfroid, M.B. (2002). Global view on functional foods: European perspectives. Br J Nutr. 88: 133-138.
Roberfroid, M. (2002). Functional food concept and its application to prebiotics. Digest Liver Dis. 34 (2): 105-110.
Roberfroid, M.B. (2008). Prebiotics: Concept, definition, criteria, methodologies, and products. In: Handbook of Prebiotics, pp. 40-60. Gibson, G.R. and Roberfroid, M.B., Eds., CRC Press, Boca Raton, FL.
Robyt, J.F. and Walseth, T.F. (1978). The mechanism of acceptor reactions of leuconostoc mesenteroides B-512F dextransucrase. Carbohydr Res. 61: 433-445.
Robyt, J.F. and Ecklund, S.H. (1983). Relative, quantitative effect of acceptors in the reaction of Leuconostoc mesenteroides dextran sucrase. Carbohydr Res. 121: 279-286.
Robyt, J.F. and Mukerjea, R. (1994). Separation and quantitative determination of nanogram quantities of maltodextrins and isomaltodextrins by thin-layer chromatography. Carbohydr Res. 251: 187-202.
Roper, H. and Koch, H. (1988). New carbohydrate-derivatives for biotechnical and chemical processes. Starch 40: 453-459.
Ruhaak, L.R., Deelder, A.M., and Wuhrer, M. (2009). Oligosaccharide analysis by graphitized carbon liquid chromatography-mass spectrometry. Anal Bioanal Chem. 394: 163-174.
Rycroft, C., Jones, M., Gibson, G., and Rastall, R. (2001). The role of prebiotics in human gut microbiology. Prebiotic oligosaccharides. J Appl Microbiol. 91: 878-887.
Saarela, M., Lahteenmaki, L., Crittenden R., Salminen, S., and Mattila-Sandholm, T. (2002). Gut bacteria and health foods-the European perspective. Int J Food Microbiol. 78: 99-117.
Santos, A., San Mauro, M., and Diaz, D.M. (2006). Prebiotics and their longterm influence on the microbial populations of the mouse bowel. Food Microbiol. 23: 498-503
Sanz, M.L., Gibson, G.R., and Rastall, R.A. (2005). Influence of disaccharide structure on prebiotic selectivity in vitro. J Agric Food Chem. 53 (13): 5192-5199.
Sasaki, M., Joh T., Koikeda, S., Kataoka, H., Tanida, S., Oshima, T., Ogasawara, N., Ohara, H., Nakao, H., and Kamiya, T. (2007). A novel strategy in production of oligosaccharides in digestive tract: Prevention of postprandial hyperglycemia and hyperinsulinemia. J Clin Biochem Nutr. 41: 191-196.
Sawai, T. and Niwa, Y. (1975). Transisomaltosylation activity of a bacterial isomalto-dextranase Agric Biol Chem. 39(5): 1077-1083.
Seo, E.-S., Nam, S.-H., Kang, H.-K., Cho, J.-Y.,. Lee, H.-S, Ryu, H.-W., and Kim, D. (2007). Synthesis of thermo-and acid-stable novel oligosaccharides by using dextransucrase with high concentration of sucrose. Enzyme Microb Technol. 40: 1117-1123.
Smiley, K.L., Slodki, M.E., Boundy, J.A., and Plattner, R.D. (1982). Asimplified method for preparing linear isomalto-oligosaccharides. Carbohydr Res. 108: 279-283.
Schmidt, F. and Enevoldsen, B.S. (1978). Comparative studies of malto-and Isomalto-oligosaccharides and their corresponding alditols. Carbohydr Res. 61: 197-209.
Swennen, K., Courtin, C.M., and Delcour, J.A. (2006) Non-digestible Oligosaccharides with Prebiotic Properties. Crit Rev Food Sci Nutr. 46: 459-471.
Takaku, H. (1988). Anomalously linked oligosaccharides mixture. In: Handbook of Amylases and Related Enzymes: Their Sources, Isolation Methods, Properties and Applications. pp. 215-217. The Amylase Research Society of Japan, Osaka, Japan, Ed., Pergamon Press, New York.
Takata, H., Kuriki, T., Okada, S., Takesada, Y., Lizuka, M., Minamiura, N., and Imanaka, T. (1992). Action of neopullulanase: Neopullulanase catalyzes both hydrolysis and transglycosylation at α-(1-4)-and α-(1-6)-glucosidic linkages. J Biol Chem. 267: 18447-18452.
Tanriseven, A. and Dogan, S. (2002). Production of isomalto-oligosaccharides using dextransucrase immobilized in alginate fibres. Process Biochem. 37: 1111-1115.
Thitaram, S.N., Chung, C.H., Day, D.F., Hinton, A., Bailey, J.S., and Siragusa, G.R. (2005). Isomaltooligosaccharide increases cecal bifidobacterium population in young broiler chickens. Poultry Sci., 84: 998-1003.
Tomomatsu, H. (1994). Health effects of oligosaccharides. Food Technol. 48: 61-65.
Tsukahara, T., Koyama, H., Okada, M., and Ushida, K. (2002). Stimulation of butyrate production by gluconic acid in batch culture of pig cecal digesta and identification of butyrate-producing bacteria. J Nutr. 132: 2229-2234.
Tsunehiro, J., Matsukubo, T., Shiota, M., and Takaesu, Y. (1997). Cariesinducing activity of the hydrogenated derivative of an isomaltooligosaccharide mixture in rats. Biosci Biotechnol Biochem. 61(8): 1317-1322.
Tsunehiro, J., Okamoto, K., Furuyama, Y., Yakate, T., and Kaneko, T. (1999). Digestibility of the hydrogenated derivative of an Isomaltooligosaccharide mixture by rats. Biosci Biotechnol Biochem. 63(9): 1515-1521.
Tuohy, K.M., Rouzaud, G.C.M., Brück, W.M., and Gibson, G.R. (2005). Modulation of the human gut microflora towards improved health using prebiotics: Assessment of efficacy. Curr Pharm Des. 11: 75-90.
Valette, P., Pelenc, V., Djouzi, Z., Andrieux, C., Paul, F., Monsan, P., and Szylit, O. (1993). Bioavailability of new synthesized glucooligosaccharides in the intestinal tract of Gnotobiotic rats. J Sci Food Agric. 62: 121-127.
Vasiljevic, T. and Shah, N.P. (2008). Probiotics-from Metchnikoff to bioactives. Int Dairy J 18: 714-728.
Verbeke, K., Ferchaud-Roucher, V., Preston, T., Small, A.C., Henckaerts, L., Priebe, M., and Vonk, R.J. (2008). Short chain fatty acid profiles in plasma and urine of healthy volunteers depend on the type of indigestible carbohydrate. Gast 134: 692-692.
Vernazza, C.L., Gibson, G.R., and Rastall, R.A. (2006). Carbohydrate preference, acid tolerance and bile tolerance in five strains of Bifidobacterium. J Appl Microbiol. 100: 846-853.
Vetere, A., Gamini, A., Campa, C., and Paoletti, S. (2000). Regiospecific transglycolytic synthesis and structural characterization of 6-O-a-glucopyranosylglucopyranose (isomaltose). Biochem Biophy Res Commun. 274: 99-104.
Vinogradov, E. and Bock, K. (1998). Structural determination of some new oligosaccharides and analysis of the branching pattern of isomaltooligosaccharides from beer. Carbohydr Res. 309: 57-64.
Vitek, V. and Vitek, K. (1973). Chromatography of sugars in body fluids IV. Separation of isomaltose and lactose in urine by paper chromatography. Biochem Med. 7: 119-127.
Vulevic, J., Rastall, R.A. and Gibson, G.R. (2004). Developing a quantitative approach for determining the in vitro prebiotic potential of dietary oligosaccharides. FEMS Microbiol Lett. 236: 153-159.
Walker, G.J. (1973). Preparation of isomaltose oligosaccharides labelled with 14C in the non-reducing terminal unit, and their use in studies of dextranase activity. Carbohydr Res. 30: 1-10
Walker, G.J. (1977). Synthesis of oligosaccharides of the isomaltose series labelled with 14C at the reducing end. Carbohydr Res., 53: 263-267.
Wang, X. and Rakshit, S. (2000). Iso-oligosaccharide production by multiple forms of transferase enzymes from Aspergillus foetidus. Process Biochem. 35: 771-775.
Wang, H.-F., Lim, P.-S., Kao, M.-D., Chan, E.-C, Lin, L.-C., and Wang, N.-P. (2001). Use of isomalto-oligosaccharide in the treatment of lipid profiles and constipation in hemodialysis patients. J Ren Nutr. 11(2): 73-79.
Wang, Y. (2009). Prebiotics: Present and future in food science and technology. Food Res Int. 42: 8-12.
Watanabe, T., Watanabe, M., and Kageyama, S. (2002) Prophylactic or ameliorating agent for immunological dysfunction, Prophylactic or ameliorating agent for microbism, tumor immunological enhancer and Prophylactic or ameliorating agent for in vivo various dysfunctions and functional food comprising α(1→6)-bonded chain glucose oligomer as active ingredient. Japanese Patent, JP 2002161039.
Watt, G.M., Lowden, P.A.S., and Flitsch, S.L. (1997). Enzyme-catalyzed formation of glycosidic linkages. Curr Opin Struct Biol. 7: 652-660.
Wichienchot, S., Prasertsan, P., Hongpattarakere, T., Gibson, G.R., and Rastall, R.A. (2003). In vitro fermentation of mixed linkage glucooligosaccharides produced by gluconobacter oxydans NCIMB 4943 by the human colonic microflora. Curr Issues Intestinal Microbiol. 7: 7-12.
Wolfrom, M.L. and Schwab, G. (1969). Quantitative analysis of gentibiose and isomaltose in admixture and its application to the characterization of dextrins. Carbohydr Res. 9: 407-413.
Wong, J.M.W. and Jenkins, D.J.A. (2007). Carbohydrate digestibility and metabolic effects. J Nutr. 137: 2539S-2546S.
Yamamoto, I., Muto, N., Nagata, E., Nakamura, T., and Suzuki, Y. (1990). Formation of a stable l-ascorbic acid α-glucoside by mammalian α-glucosidase-catalyzed transglucosylation. Biochim Biophys Acta, 1035: 44-50.
Yamamoto, T., Unno, T., Watanabe, Y., Yamamoto, M., Okuyama, M., Mori, H., Chiba, S., and Kimura, A. (2004). Purification and characterization of Acremonium implicatum a-glucosidase having regioselectivity for α-(1,3)-glucosidic linkage. Biochim Biophys Acta 1700: 189-198.
Yamasaki, Y., Miyake, T., and Suzuki, Y. (1973). Properties of crystalline α-glucosidase from Mucor javanicus. Agric Biol Chem. 37: 251-259.
Yamasaki, Y., Suzuki, Y., and Ozawa, J. (1976). Purification and properties of α-glucosidase from Penicillium purpurogenum. Agric Biol Chem. 40: 669-676.
Yang, Y., Iji, P.A., and Choct, M. (2009). Dietary modulation of gut microflora in broiler chickens: A review of the role of six kinds of alternatives to in-feed antibiotics. World's Poultry Sci J. 65: 97-114.
Yasuda, E. H, Takaku, H., and Matsumoto, H. (1986). Japanese Patent, JP 61-212296.
Yatake, T. (1993). Anomalously linked oligosaccharides in oligosaccharides. In: Production, Properties and Application. pp. 79-89. Nakakuki, T., Ed., Gordon and Breech Science Publishers, Tokyo, Japan.
Yoneyama, M., Shibuya, T., and Miyake T. (1992). Saccharides sous forme de poudre, préparation et utilisations. French Patent, FR 2677359.
Yoo, S.H., Kweon, M.R., Kim, M.J., Auh, J.H., Jung, D.S., Kim, J.R., Yook, C., Kim, J.W., and Park, K.H. (1995). Branched oligosaccharides concentrated by yeast fermentation and effectiveness as a low sweetness humectant. J Food Sci. 60(3): 516-519.
Yoo, S.K. (1997). The production of glucooligosaccharides by Leuconostoc mesenteroides
ATCC 13146 and Lipomyces starkeyi ATCC 74054. Ph.D. Dissertation, Louisiana State University.
Yoon, S.-H., Mukerjea, R., and Robyt, J.F. (2003). Specificity of yeast (Saccharomyces cerevisiae) in removing carbohydrates by fermentation. Carbohydr Res. 338: 1127-1132.
Yun, J., Lee, M., and Song, S. (1994a). Continuous production of isomaltooligosaccharides from maltose syrup by immobilized cells of permeabilized Aureobasidium Pullulans. Biotechnol Lett. 16: 1145-1150.
Yun, J., Suh, J.H., and Song, S. (1994b). Kinetic study and mathematical model for the production of isomalto-oligosaccharides from maltose by transglucosylation of Aureobasidium pullulans. J Korean Inst Chem Eng. 32(6): 875-880.
Zhang, F., Li, D.F., Lu, W.Q., and Yi, G.F. (2003). Effects of isomaltooligosaccharides on broiler performance and intestinal microflora. Poultry Sci. 82: 657-663.