QSRR; N-nitrosamine impurity; Pharmaceuticals; LC-MS/MS; ICH Q2(R2) guidelines; Quantification; Call for review
Abstract :
[en] To address regulatory concerns regarding N-nitrosamine contamination in pharmaceutical products, generic LC- MS/MS methods for determining N-nitrosamines were developed using an innovative in silico approach based on Quantitative Structure Retention Relationship modeling (QSRR). The development process included screening and optimization phases, offering flexibility in targeting N-nitrosamines and addressing the challenges related to the matrix effect. This methodology represents a significant advancement in method development. Among the developed methods, a highly sensitive and accurate LC-MS/MS method was successfully validated to simultaneously determine 5 small-molecule N-nitrosamine impurities in tablets, which was used in the present proof-of-concept study. The validation followed the ICH Q2 (R2) guidelines, employing a combined approach for accuracy and precision based on total error risk-based methodology. The method was validated to function as both an impurity limit test and a quantitative method. Validation results demonstrated adequate quantitative performance of the method, establishing a validated dosing range from 1 to 30 ng/mL for all N-nitrosamines. The estimated detection limit ranged from 0.75 pg/mL to 0.02 ng/mL. The detection and quantification limits for each N-nitrosamine met the EMA N-nitrosamine investigation approach requirements. Moreover, both are always below 10 % of their respective acceptable limit in the studied finished product formulation. This proposed method is suitable for investigating small-molecule N-nitrosamines in pharmaceutical products and also provides a starting point for further method development, particularly for the determination of newly identified small-molecule N-nitrosamines and drug substance-related N-nitrosamines.
Research Center/Unit :
CIRM - Centre Interdisciplinaire de Recherche sur le Médicament - ULiège
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Zhang, Yue ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Houari, Sabah ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Van Laethem, Thomas ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Dispas, Amandine ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Ziemons, Eric ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Hubert, Philippe ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Hubert, Cédric ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Language :
English
Title :
Innovative QSRR modeling approach for the development of an ultra-sensitive LC-MS/MS method for trace analysis of N-nitrosamines
Publication date :
June 2025
Journal title :
Journal of Pharmaceutical and Biomedical Analysis Open
U.S. Food & Drug Administration, Control of Nitrosamine Impurities in Human Drugs Guidance for Industry, Revision 2, (2024).
European Medicines Agency, EMA/369136/2020 Assessment report, Procedure under Article 5(3) of Regulation EC (No) 726/2004 Nitrosamine impurities in human medicinal products, (2020).
The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use, ICH M7(R2) Assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk, (2023).
IARC, Agents classified by the IARC Monographs, Volumes 1–130, (n.d.). 〈https://monographs.iarc.who.int/list-of-classifications〉 (accessed March 24, 2024).
Beard, J.C., Swager, T.M., An organic chemist's guide to n-nitrosamines: their structure, reactivity, and role as contaminants. J. Org. Chem. 86 (2021), 2037–2057, 10.1021/acs.joc.0c02774.
European Medicines Agency, Assessment report - Referral under Article 31 of Directive 2001/83/EC angiotensin-II-receptor antagonists (sartans) containing a tetrazole group, (2019).
European Medicines Agency, Questions and answers for marketing authorisation holders/applicants on the CHMP Opinion for the Article 5(3) of Regulation (EC) No 726/2004 referral on nitrosamine impurities in human medicinal products. Revision, 21, 2024.
U.S. Food & Drug Administration, Liquid Chromatography-Electrospray Ionization-High Resolution Mass Spectrometry (LC-ESI-HRMS) Method for the Determination of Nitrosamine Impurities in Metformin Drug Substance and Drug Product, (2020). 〈https://www.fda.gov/media/138617/download〉 (accessed March 23, 2024).
Health Sciences Authority, Determination of NDMA in Metformin Products by HRAM-GCMS, (2020). 〈https://www.hsa.gov.sg/docs/default-source/announcements/safety-alerts/determination-of-ndma-in-metformin-products-by-hram-gcms.pdf〉 (accessed March 23, 2024).
Swissmedic, Genotoxic substances in sartans, (2021). 〈https://www.edqm.eu/documents/52006/71923/31-pv-185-genotoxic-substances-sartans.pdf/fe42380c-c0b4-862e-ed6c-178db8f78803?t= 1628668175780〉 (accessed March 23, 2024).
Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Test method for the determination of NDMA by LC-MS/MS in Ranitidine Drug Substance and Film Coated Tablets, (2019). 〈https://www.edqm.eu/documents/52006/290719/CVUA+Karlsruhe+method+based+on+UHPLC-APCI-MS_MS.pdf/e198028d-734c-0b92-10e9-083ee1094d8a?t= 1638888048231〉 (accessed March 23, 2024).
U.S. Food & Drug Administration, Combined Direct Injection N-Nitrosodimethylamine (NDMA), N-Nitrosodiethylamine (NDEA), N-Nitrosoethylisopropylamine (NEIPA), N-Nitrosodiisopropylamine (NDIPA), and N-Nitrosodibutylamine (NDBA) Impurity Assay by GC-MS/MS, (2019). 〈https://www.fda.gov/media/123409/download〉 (accessed March 23, 2024).
United States Pharmacopeial Convention, <1469> Nitrosamine impurities, in: United States Pharmacopoeia, 2024.
European Directorate for the Quality of Medicines & HealthCare, 2.5.42. N-nitrosamines in active substances, in: Eur. Pharmacopoeia, 11.0, n.d.: pp. 199–203.
Luo, F., Liu, Y., Xie, Y., Hou, W., Zhang, L., Zhang, Z., Simultaneous determination of 13 nitrosamine impurities in biological medicines using salting-out liquid-liquid extraction coupled with liquid chromatography tandem mass spectrometry. J. Pharm. Biomed. Anal., 218, 2022, 114867, 10.1016/j.jpba.2022.114867.
Xie, Y., Zhang, L., Hou, W., Cheng, Y., Luo, F., Liu, Z., Zhang, Z., A novel method for monitoring N-nitrosamines impurities using NH2-MIL-101(Fe) mediated dispersive micro-solid phase extraction coupled with LC-MS/MS in biopharmaceuticals. J. Pharm. Sci. 112 (2023), 2783–2789, 10.1016/j.xphs.2023.07.017.
Naylor, B.C., Catrow, J.Leon, Maschek, J.Alan, Cox, J.E., QSRR automator: a tool for automating retention time prediction in lipidomics and metabolomics. Metabolites, 10, 2020, 10.3390/metabo10060237.
Kumari, P., Van Laethem, T., Hubert, P., Fillet, M., Sacré, P.Y., Hubert, C., Quantitative structure retention-relationship modeling: towards an innovative general-purpose strategy. Molecules 28 (2023), 1–17, 10.3390/molecules28041696.
Van Laethem, T., Kumari, P., Hubert, P., Fillet, M., Sacré, P.Y., Hubert, C., A pharmaceutical-related molecules dataset for reversed-phase chromatography retention time prediction built on combining pH and gradient time conditions. Data Brief, 42, 2022, 108017, 10.1016/j.dib.2022.108017.
Liapikos, T., Zisi, C., Kodra, D., Kademoglou, K., Diamantidou, D., Begou, O., Pappa-Louisi, A., Theodoridis, G., Quantitative structure retention relationship (QSRR) modelling for Analytes’ retention prediction in LC-HRMS by applying different Machine Learning algorithms and evaluating their performance. J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 1191, 2022, 123132, 10.1016/j.jchromb.2022.123132.
The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use, ICH Q14(R2) Analytical procedure development, 2024.
Nasiri, A., Jahani, R., Mokhtari, S., Yazdanpanah, H., Daraei, B., Faizi, M., Kobarfard, F., Overview, consequences, and strategies for overcoming matrix effects in LC-MS analysis: a critical review. Analyst 146 (2021), 6049–6063, 10.1039/d1an01047f.
Van Laethem, T., Kumari, P., Boulanger, B., Hubert, P., Fillet, M., Sacré, P.Y., Hubert, C., User-driven strategy for in silico screening of reversed-phase liquid chromatography conditions for known pharmaceutical-related small molecules. Molecules, 27, 2022, 10.3390/molecules27238306.
Guillarme, D., Nguyen, D.T.T., Rudaz, S., Veuthey, J.L., Method transfer for fast liquid chromatography in pharmaceutical analysis: application to short columns packed with small particle. Part I: Isocratic separation. Eur. J. Pharm. Biopharm. 66 (2007), 475–482, 10.1016/j.ejpb.2006.11.027.
Guillarme, D., Nguyen, D.T.T., Rudaz, S., Veuthey, J.L., Method transfer for fast liquid chromatography in pharmaceutical analysis: application to short columns packed with small particle. Part II: Gradient experiments. Eur. J. Pharm. Biopharm. 68 (2008), 430–440, 10.1016/j.ejpb.2007.06.018.
He, Z., Xu, Y., Zhang, Y., Liu, B., Liu, X., On the use of in-source fragmentation in ultrahigh-performance liquid chromatography-electrospray ionization-high-resolution mass spectrometry for pesticide residue analysis. J. Agric. Food Chem. 67 (2019), 10800–10812, 10.1021/acs.jafc.9b04583.
Schmidtsdorff, S., Neumann, J., Schmidt, A.H., Parr, M.K., Analytical lifecycle management for comprehensive and universal nitrosamine analysis in various pharmaceutical formulations by supercritical fluid chromatography. J. Pharm. Biomed. Anal., 197, 2021, 113960, 10.1016/j.jpba.2021.113960.
Jiang, J., Li, L., Wang, M., Wang, W., Theoretical explanation of the peak splitting of tobacco-specific N-nitrosamines in HPLC. Bull. Korean Chem. Soc. 33 (2012), 1722–1728.
Deng, H., Tang, G., Fan, Z., Liu, S., Li, Z., Wang, Y., Bian, Z., Shen, W., Tang, S., Yang, F., Use of autoclave extraction-supercritical fluid chromatography/tandem mass spectrometry to analyze 4-(methylintrosamino)-1-(3-pyridyl)-1-butanone and N’-nitrosonornicotine in tobacco. J. Chromatogr. A 1595 (2019), 207–214, 10.1016/j.chroma.2019.02.053.
The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use, ICH Q2(R2) Validation of Analytical Procedures, 2023.
Planinšek Parfant, T., Skube, T., Roškar, R., A robust analytical method for simultaneous quantification of 13 low-molecular-weight N-Nitrosamines in various pharmaceuticals based on solid phase extraction and liquid chromatography coupled to high-resolution mass spectrometry. Eur. J. Pharm. Sci., 192, 2024, 106633, 10.1016/j.ejps.2023.106633.
Hubert, P., Nguyen-Huu, J.J., Boulanger, B., Chapuzet, E., Chiap, P., Cohen, N., Compagnon, P.A., Dewé, W., Feinberg, M., Lallier, M., Laurentie, M., Mercier, N., Muzard, G., Nivet, C., Valat, L., Rozet, E., Harmonization of strategies for the validation of quantitative analytical procedures. A SFSTP Propos. - Part II, J. Pharm. Biomed. Anal. 45 (2007), 70–81, 10.1016/j.jpba.2007.06.013.
European Parliament and the Council of the European Union, COMMISSION DECISION of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results, 2002.