Gram-positive bacteria; drug discovery; drug interactions; platelets
Abstract :
[en] Infections with multidrug-resistant bacteria pose a major healthcare problem which urges the need for novel treatment options. Besides its potent antiplatelet properties, ticagrelor has antibacterial activity against Gram-positive bacteria, including methicillin- and vancomycin-resistant Staphylococcus aureus (MRSA and VRSA). Several retrospective studies in cardiovascular patients support an antibacterial effect of this drug which is not related to its antiplatelet activity. We investigated the mechanism of action of ticagrelor in Staphylococcus aureus and model Bacillus subtilis, and assessed cross-resistance with two conventional anti-MRSA antibiotics, vancomycin and daptomycin. Bacillus subtilis bioreporter strains revealed ticagrelor-induced cell envelope-related stress responses. Sub-inhibitory drug concentrations caused membrane depolarization, impaired positioning of both the peripheral membrane protein MinD and the peptidoglycan precursor lipid II, and it affected cell shape. At the MIC, ticagrelor destroyed membrane integrity, indicated by the influx of membrane impermeable dyes, and lipid aggregate formation. Whole-genome sequencing of in vitro-generated ticagrelor-resistant MRSA clones revealed mutations in genes encoding ClpP, ClpX, and YjbH. Lipidomic analysis of resistant clones displayed changes in levels of the most abundant lipids of the Staphylococcus aureus membrane, for example, cardiolipins, phosphatidylglycerols, and diacylglycerols. Exogeneous cardiolipin, phosphatidylglycerol, or diacylglycerol antagonized the antibacterial properties of ticagrelor. Ticagrelor enhanced MRSA growth inhibition and killing by vancomycin and daptomycin in both exponential and stationary phases. Finally, no cross-resistance was observed between ticagrelor and daptomycin, or vancomycin. Our study demonstrates that ticagrelor targets multiple lipids in the cytoplasmic membrane of Gram-positive bacteria, thereby retaining activity against multidrug-resistant staphylococci including daptomycin- and vancomycin-resistant strains.IMPORTANCEInfections with multidrug-resistant bacteria pose a major healthcare problem with an urgent need for novel treatment options. The antiplatelet drug ticagrelor possesses antibacterial activity against Gram-positive bacteria including methicillin-resistant and vancomycin-resistant Staphylococcus aureus strains. We report a unique, dose-dependent, antibacterial mechanism of action of ticagrelor, which alters the properties and integrity of the bacterial cytoplasmic membrane. Ticagrelor retains activity against multidrug-resistant staphylococci, including isolates carrying the most common in vivo selected daptomycin resistance mutations and vancomycin-intermediate Staphylococcus aureus. Our data support the use of ticagrelor as adjunct therapy against multidrug-resistant strains. Because of the presence of multiple non-protein targets of this drug within the bacterial membrane, resistance development is expected to be slow. All these findings corroborate the accumulating observational clinical evidence for a beneficial anti-bacterial effect of ticagrelor in cardiovascular patients in need of such treatment.
Jacques, Nicolas ; Université de Liège - ULiège > GIGA > GIGA Cardiovascular Sciences - Cardiology
Esquembre, Lidia Alejo; Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
Schneider, Dana C; Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
Straetener, Jan; Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
Henriksen, Camilla; Department of Veterinary and Animal Sciences, Faculty of Health and Medical sciences, University of Copenhagen, Copenhagen, Denmark
MUSUMECI, Lucia ; Centre Hospitalier Universitaire de Liège - CHU > > Service de chirurgie cardio-vasculaire et thoracique
Putters, Florence ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques
Ferreira Melo, Sofia ; Université de Liège - ULiège > GIGA > GIGA Metabolism & Cardiovascular Biology - Cardiology
Sánchez-López, Elena; Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, the Netherlands
Giera, Martin; Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, the Netherlands
Penoy, Noémie ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Piel, Géraldine ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Verlaine, Olivier; Bacterial physiology and genetics-Centre d'Ingénierie des Protéines-Integrative Biological Sciences, University of Liège > Department of Life Sciences
Amoroso, Ana; Bacterial physiology and genetics-Centre d'Ingénierie des Protéines-Integrative Biological Sciences, Department of Life Sciences, University of Liège, Liège, Belgium
Joris, Bernard; Bacterial physiology and genetics-Centre d'Ingénierie des Protéines-Integrative Biological Sciences, Department of Life Sciences, University of Liège, Liège, Belgium
Slavetinsky, Christoph J ; Pediatric Surgery and Urology, University Children's Hospital Tübingen, University of Tübingen, Tübingen, Germany ; German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany ; Cluster of Excellence "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, Tübingen, Germany
Goffin, Eric ; Université de Liège - ULiège > Département de pharmacie > Chimie pharmaceutique
Pirotte, Bernard ; Université de Liège - ULiège > Département de pharmacie
Frees, Dorte ; Department of Veterinary and Animal Sciences, Faculty of Health and Medical sciences, University of Copenhagen, Copenhagen, Denmark
Brötz-Oesterhelt, Heike ; Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany ; German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany ; Cluster of Excellence "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, Tübingen, Germany
Lancellotti, Patrizio ; Université de Liège - ULiège > Département des sciences cliniques > Cardiologie - Pathologie spéciale et réhabilitation
Ventola CL. 2015. The antibiotic resistance crisis: part 1: causes and threats. P T 40:277–283.
Antimicrobial Resistance Collaborators. 2022. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399:629–655. https://doi.org/10.1016/S0140-6736(21)02724-0
Fuller R, Chavez B. 2012. Ticagrelor (brilinta), an antiplatelet drug for acute coronary syndrome. P T 37:562–568.
Springthorpe B, Bailey A, Barton P, Birkinshaw TN, Bonnert RV, Brown RC, Chapman D, Dixon J, Guile SD, Humphries RG, et al. 2007. From ATP to AZD6140: the discovery of an orally active reversible P2Y12 receptor antagonist for the prevention of thrombosis. Bioorg Med Chem Lett 17:6013–6018. https://doi.org/10.1016/j.bmcl.2007.07.057
Wallentin L, Becker RC, Budaj A, Cannon CP, Emanuelsson H, Held C, Horrow J, Husted S, James S, Katus H, Mahaffey KW, Scirica BM, Skene A, Steg PG, Storey RF, Harrington RA, Freij A, Thorsén M, PLATO Investigators. 2009. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 361:1045–1057. https://doi.org/10.1056/ NEJMoa0904327
Sexton TR, Zhang G, Macaulay TE, Callahan LA, Charnigo R, Vsevolozhskaya OA, Li Z, Smyth S. 2018. Ticagrelor reduces thromboinflammatory markers in patients with pneumonia. JACC Basic Transl Sci 3:435–449. https://doi.org/10.1016/j.jacbts.2018.05.005
Phanchana M, Phetruen T, Harnvoravongchai P, Raksat P, Ounjai P, Chankhamhaengdecha S, Janvilisri T. 2020. Repurposing a platelet aggregation inhibitor ticagrelor as an antimicrobial against Clostridioides difficile. Sci Rep 10:6497. https://doi.org/10.1038/s41598-020-63199-x
Lancellotti P, Musumeci L, Jacques N, Servais L, Goffin E, Pirotte B, Oury C. 2019. Antibacterial activity of ticagrelor in conventional antiplatelet dosages against antibiotic-resistant Gram-positive bacteria. JAMA Cardiol 4:596–599. https://doi.org/10.1001/jamacardio.2019.1189
Oury C, Meyers S, Jacques N, Leeten K, Jiang Z, Musumeci L, Lox M, Debuisson M, Goffin E, Pirotte B, Delvenne P, Nchimi A, Hubert C, Heptia M, Hubert P, Kuijpers MJE, Vanassche T, Martinod K, Verhamme P, Lancellotti P. 2023. Protective effect of ticagrelor against infective endocarditis induced by virulent Staphylococcus aureus in mice. JACC Basic Transl Sci 8:1439–1453. https://doi.org/10.1016/j.jacbts.2023.02. 003
Pant N, Miranda-Hernandez S, Rush C, Warner J, Eisen DP. 2022. Non-antimicrobial adjuvant therapy using ticagrelor reduced biofilm-related Staphylococcus aureus prosthetic joint infection. Front Pharmacol 13:927783. https://doi.org/10.3389/fphar.2022.927783
Lupu L, Shepshelovich D, Banai S, Hershkoviz R, Isakov O. 2020. Effect of ticagrelor on reducing the risk of Gram-Positive infections in patients with acute coronary syndrome. Am J Cardiol 130:56–63. https://doi.org/10.1016/j.amjcard.2020.06.016
Butt JH, Fosbøl EL, Gerds TA, Iversen K, Bundgaard H, Bruun NE, Larsen AR, Petersen A, Andersen PS, Skov RL, Østergaard L, Havers-Borgersen E, Gislason GH, Torp-Pedersen C, Køber L, Olesen JB. 2022. Ticagrelor and the risk of Staphylococcus aureus bacteraemia and other infections. Eur Heart J Cardiovasc Pharmacother 8:13–19. https://doi.org/10.1093/ehjcvp/pvaa099
Urban A, Eckermann S, Fast B, Metzger S, Gehling M, Ziegelbauer K, Rübsamen-Waigmann H, Freiberg C. 2007. Novel whole-cell antibiotic biosensors for compound discovery. Appl Environ Microbiol 73:6436–6443. https://doi.org/10.1128/AEM.00586-07
Wex KW, Saur JS, Handel F, Ortlieb N, Mokeev V, Kulik A, Niedermeyer THJ, Mast Y, Grond S, Berscheid A, Brötz-Oesterhelt H. 2021. Bioreporters for direct mode of action-informed screening of antibiotic producer strains. Cell Chem Biol 28:1242–1252. https://doi.org/10.1016/j.chembiol.2021.02.022
Strahl H, Hamoen LW. 2010. Membrane potential is important for bacterial cell division. Proc Natl Acad Sci U S A 107:12281–12286. https://doi.org/10.1073/pnas.1005485107
Sidders AE, Kedziora KM, Arts M, Daniel J-M, de Benedetti S, Beam JE, Bui DT, Parsons JB, Schneider T, Rowe SE, Conlon BP. 2023. Antibiotic-induced accumulation of lipid II synergizes with antimicrobial fatty acids to eradicate bacterial populations. Elife 12:e80246. https://doi.org/10.7554/eLife.80246
Tiyanont K, Doan T, Lazarus MB, Fang X, Rudner DZ, Walker S. 2006. Imaging peptidoglycan biosynthesis in Bacillus subtilis with fluorescent antibiotics. Proc Natl Acad Sci U S A 103:11033–11038. https://doi.org/10.1073/pnas.0600829103
McAuley S, Vadia S, Jani C, Huynh A, Yang Z, Levin PA, Nodwell JR. 2019. A chemical inhibitor of cell growth reduces cell size in Bacillus subtilis. ACS Chem Biol 14:688–695. https://doi.org/10.1021/acschembio. 8b01066
Nonejuie P, Burkart M, Pogliano K, Pogliano J. 2013. Bacterial cytological profiling rapidly identifies the cellular pathways targeted by antibacterial molecules. Proc Natl Acad Sci U S A 110:16169–16174. https://doi.org/10.1073/pnas.1311066110
Wong F, Stokes JM, Cervantes B, Penkov S, Friedrichs J, Renner LD, Collins JJ. 2021. Cytoplasmic condensation induced by membrane damage is associated with antibiotic lethality. Nat Commun 12:2321. https://doi.org/10.1038/s41467-021-22485-6
Jensen C, Li H, Vestergaard M, Dalsgaard A, Frees D, Leisner JJ. 2020. Nisin damages the septal membrane and triggers DNA condensation in methicillin-resistant Staphylococcus aureus Front Microbiol 11:1007. https://doi.org/10.3389/fmicb.2020.01007
Lamsa A, Liu W-T, Dorrestein PC, Pogliano K. 2012. The Bacillus subtilis cannibalism toxin SDP collapses the proton motive force and induces autolysis. Mol Microbiol 84:486–500. https://doi.org/10.1111/j.13652958.2012.08038.x
Engman J, Rogstam A, Frees D, Ingmer H, von Wachenfeldt C. 2012. The YjbH adaptor protein enhances proteolysis of the transcriptional regulator Spx in Staphylococcus aureus. J Bacteriol 194:1186–1194. https://doi.org/10.1128/JB.06414-11
Stahlhut SG, Alqarzaee AA, Jensen C, Fisker NS, Pereira AR, Pinho MG, Thomas VC, Frees D. 2017. The ClpXP protease is dispensable for degradation of unfolded proteins in Staphylococcus aureus. Sci Rep 7:11739. https://doi.org/10.1038/s41598-017-12122-y
Baker TA, Sauer RT. 2012. ClpXP, an ATP-powered unfolding and protein-degradation machine. Biochim Biophys Acta 1823:15–28. https://doi.org/10.1016/j.bbamcr.2011.06.007
Short SA, White DC. 1971. Metabolism of phosphatidylglycerol, lysylphosphatidylglycerol, and cardiolipin of Staphylococcus aureus. J Bacteriol 108:219–226. https://doi.org/10.1128/jb.108.1.219-226.1971
Koprivnjak T, Zhang D, Ernst CM, Peschel A, Nauseef WM, Weiss JP. 2011. Characterization of Staphylococcus aureus cardiolipin synthases 1 and 2 and their contribution to accumulation of cardiolipin in stationary phase and within phagocytes. J Bacteriol 193:4134–4142. https://doi.org/10.1128/JB.00288-11
Ernst CM, Slavetinsky CJ, Kuhn S, Hauser JN, Nega M, Mishra NN, Gekeler C, Bayer AS, Peschel A. 2018. Gain-of-function mutations in the phospholipid flippase MprF confer specific daptomycin resistance. MBio 9:1–12. https://doi.org/10.1128/mBio.01659-18
Jones T, Yeaman MR, Sakoulas G, Yang S-J, Proctor RA, Sahl H-G, Schrenzel J, Xiong YQ, Bayer AS. 2008. Failures in clinical treatment of Staphylococcus aureus infection with daptomycin are associated with alterations in surface charge, membrane phospholipid asymmetry, and drug binding. Antimicrob Agents Chemother 52:269–278. https://doi.org/10.1128/AAC.00719-07
Xu L, Henriksen C, Mebus V, Guérillot R, Petersen A, Jacques N, Jiang J-H, Derks RJE, Sánchez-López E, Giera M, Leeten K, Stinear TP, Oury C, Howden BP, Peleg AY, Frees D. 2023. A clinically selected Staphylococcus aureus clpP mutant survives daptomycin treatment by reducing binding of the antibiotic and adapting a rod-shaped morphology. Antimicrob Agents Chemother 67:e0032823. https://doi.org/10.1128/aac.00328-23
Tarai B, Das P, Kumar D. 2013. Recurrent challenges for clinicians: emergence of methicillin-resistant Staphylococcus aureus, vancomycin resistance, and current treatment options. J Lab Physicians 5:71–78. https://doi.org/10.4103/0974-2727.119843
Jordan S, Junker A, Helmann JD, Mascher T. 2006. Regulation of LiaRS-dependent gene expression in Bacillus subtilis: identification of inhibitor proteins, regulator binding sites, and target genes of a conserved cell envelope stress-sensing two-component system. J Bacteriol 188:5153–5166. https://doi.org/10.1128/JB.00310-06
Pogliano J, Pogliano N, Silverman JA. 2012. Daptomycin-mediated reorganization of membrane architecture causes mislocalization of essential cell division proteins. J Bacteriol 194:4494–4504. https://doi.org/10.1128/JB.00011-12
Zhang L, Esquembre LA, Xia S-N, Oesterhelt F, Hughes CC, Brötz-Oesterhelt H, Teufel R. 2022. Antibacterial synnepyrroles from human-associated Nocardiopsis sp. show protonophore activity and disrupt the bacterial cytoplasmic membrane. ACS Chem Biol 17:2836–2848. https://doi.org/10.1021/acschembio.2c00460
Cacace E, Kim V, Varik V, Knopp M, Tietgen M, Brauer-Nikonow A, Inecik K, Mateus A, Milanese A, Mårli MT, Mitosch K, Selkrig J, Brochado AR, Kuipers OP, Kjos M, Zeller G, Savitski MM, Göttig S, Huber W, Typas A. 2023. Systematic analysis of drug combinations against Gram-positive bacteria. Nat Microbiol 8:2196–2212. https://doi.org/10.1038/s41564-023-01486-9
Engman J, von Wachenfeldt C. 2015. Regulated protein aggregation: a mechanism to control the activity of the ClpXP adaptor protein YjbH. Mol Microbiol 95:51–63. https://doi.org/10.1111/mmi.12842
Frees D, Qazi SNA, Hill PJ, Ingmer H. 2003. Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. Mol Microbiol 48:1565–1578. https://doi.org/10.1046/j.1365-2958.2003.03524.x
Moreno-Cinos C, Goossens K, Salado IG, Van Der Veken P, De Winter H, Augustyns K. 2019. ClpP protease, a promising antimicrobial target. Int J Mol Sci 20:2232. https://doi.org/10.3390/ijms20092232
Bæk KT, Gründling A, Mogensen RG, Thøgersen L, Petersen A, Paulander W, Frees D. 2014. β-lactam resistance in methicillin-resistant Staphylococcus aureus USA300 is increased by inactivation of the ClpXP protease. Antimicrob Agents Chemother 58:4593–4603. https://doi.org/10.1128/AAC.02802-14
Pamp SJ, Frees D, Engelmann S, Hecker M, Ingmer H. 2006. Spx is a global effector impacting stress tolerance and biofilm formation in Staphylococcus aureus. J Bacteriol 188:4861–4870. https://doi.org/10.1128/JB.00194-06
Nielsen TK, Petersen IB, Xu L, Barbuti MD, Mebus V, Justh A, Alqarzaee AA, Jacques N, Oury C, Thomas V, Kjos M, Henriksen C, Frees D. 2024. The Spx stress regulator confers high-level β-lactam resistance and decreases susceptibility to last-line antibiotics in methicillin-resistant Staphylococcus aureus. bioRxiv:2024.03.01.582999. https://doi.org/10.1101/2024.03.01.582999
Grein F, Müller A, Scherer KM, Liu X, Ludwig KC, Klöckner A, Strach M, Sahl H-G, Kubitscheck U, Schneider T. 2020. Ca2+-daptomycin targets cell wall biosynthesis by forming a tripartite complex with undecaprenyl-coupled intermediates and membrane lipids. Nat Commun 11:1455. https://doi.org/10.1038/s41467-020-15257-1
Hachmann A-B, Sevim E, Gaballa A, Popham DL, Antelmann H, Helmann JD. 2011. Reduction in membrane phosphatidylglycerol content leads to daptomycin resistance in Bacillus subtilis. Antimicrob Agents Chemother 55:4326–4337. https://doi.org/10.1128/AAC.01819-10
Ernst CM, Peschel A. 2011. Broad-spectrum antimicrobial peptide resistance by MprF-mediated aminoacylation and flipping of phospholipids. Mol Microbiol 80:290–299. https://doi.org/10.1111/j.1365-2958.2011.07576.x
Jung D, Rozek A, Okon M, Hancock REW. 2004. Structural transitions as determinants of the action of the calcium-dependent antibiotic daptomycin. Chem Biol 11:949–957. https://doi.org/10.1016/j.chembiol.2004.04.020
Müller A, Wenzel M, Strahl H, Grein F, Saaki TNV, Kohl B, Siersma T, Bandow JE, Sahl HG, Schneider T, Hamoen LW. 2016. Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains. Proc Natl Acad Sci U S A 113:E7077–E7086. https://doi.org/10.1073/pnas.1611173113
Ernst CM, Peschel A. 2019. MprF-mediated daptomycin resistance. Int J Med Microbiol 309:359–363. https://doi.org/10.1016/j.ijmm.2019.05.010
Maron B, Rolff J, Friedman J, Hayouka Z. 2022. Antimicrobial peptide combination can hinder resistance evolution. Microbiol Spectr 10:e0097322. https://doi.org/10.1128/spectrum.00973-22
Song D, Jiao H, Liu Z. 2021. Phospholipid translocation captured in a bifunctional membrane protein MprF. Nat Commun 12:2927. https://doi.org/10.1038/s41467-021-23248-z
Stülke J, Hanschke R, Hecker M. 1993. Temporal activation of βglucanase synthesis in Bacillus subtilis is mediated by the GTP pool. J Gen Microbiol 139:2041–2045. https://doi.org/10.1099/00221287-139-9-2041
Otani H, Mouncey NJ. 2022. RIViT-seq enables systematic identification of regulons of transcriptional machineries. Nat Commun 13:3502. https://doi.org/10.1038/s41467-022-31191-w
Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D. 2008. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res 49:1137–1146. https://doi.org/10.1194/jlr. D700041-JLR200
Kong L, Dawkins E, Campbell F, Winkler E, Derks RJE, Giera M, Kamp F, Steiner H, Kros A. 2020. Photo-controlled delivery of very long chain fatty acids to cell membranes and modulation of membrane protein function. Biochim Biophys Acta Biomembr 1862:183200. https://doi.org/10.1016/j.bbamem.2020.183200