[en] AbstractWheat as a kind of diet material can be used for broiler production. However, due to non‐starch polysaccharides in wheat, wheat may lead to lower growth performance and worth health. To reverse the negative effect, solid‐state fermentation pro‐enzymes were added. In this experiment, growth performance, intestinal health‐related genes, short chain fatty acids (SCFAs) and intestinal microbiota were detected to find the effects of wheat meal and combined with enzymes on broiler chickens from 15 to 42 days of age. A total of 432 1‐day‐old Arbor Acres broiler chickens were fed corn‐based diet (CD) for 14 days as the preparation stage of the experiment. Then, they were randomly divided into three groups and fed three different kinds of diets which were corn‐based diet (CD group), wheat‐based diet (WD group), and SFP enzymes supplementation in WD (Enzymes+Wheat‐based diet group). The results showed that compared with broilers in CD group, broilers in WD group had lower weight gain and higher Feed conversion ratio (p < 0.05) during the whole experimental period especially from day 15 to day 21, but there was no significant effect on feed intake (p > 0.05). Moreover, SFP enzymes decreased the spleen index (p < 0.05). Wheat also had trends to decrease the expression of ZO‐1 (p = 0.096) and increase the concentrations of acetate (p < 0.05), butyrate (p < 0.05) and total SCFAs (p < 0.05), in which SFP enzymes caused the opposite results except for butyrate, and SFP enzymes even increased the expression of ZO‐1 (p < 0.001) and OCCLUDIN (p = 0.075) and decreased the expression of TNF‐α (p < 0.01). Meanwhile, wheat enhanced the abundances of Barnesiella and Bifidobacterium (p < 0.05) and inhibited the abundances of Flavonifractor, Sellimonas, Lachnospiraceae_NK4A136_group, Subdoligranulum, and Ruminococcus_gauvreauii_group (p < 0.05), and SFP enzymes could reverse the negative effects, and the changes in microbiota could explain the other different parameters. Collectively, wheat results in inflammation and worse growth performance, but SFP enzymes supplementation in WD benefits chickens' growth performance by improving intestinal barrier function, decreasing inflammation, modulating cecal microbiota and SCFAs production.
Disciplines :
Animal production & animal husbandry
Author, co-author :
Li, Jiaheng ✱; Université de Liège - ULiège > TERRA Research Centre ; State Key Laboratory of Animal Nutrition Institute of Animal Science Chinese Academy of Agricultural Sciences Beijing China
Bai, Guosong ✱; State Key Laboratory of Animal Nutrition Institute of Animal Science Chinese Academy of Agricultural Sciences Beijing China
Gao, Yan; Hangzhou Bio‐Com Biotechnology Co. LTD Hangzhou China
Gao, Qingtao; State Key Laboratory of Animal Nutrition Institute of Animal Science Chinese Academy of Agricultural Sciences Beijing China
Zhong, Ruqing; State Key Laboratory of Animal Nutrition Institute of Animal Science Chinese Academy of Agricultural Sciences Beijing China
Chen, Liang; State Key Laboratory of Animal Nutrition Institute of Animal Science Chinese Academy of Agricultural Sciences Beijing China
Wang, Yunlong; Hangzhou Bio‐Com Biotechnology Co. LTD Hangzhou China
Ma, Teng ; State Key Laboratory of Animal Nutrition Institute of Animal Science Chinese Academy of Agricultural Sciences Beijing China
Zhang, Hongfu; State Key Laboratory of Animal Nutrition Institute of Animal Science Chinese Academy of Agricultural Sciences Beijing China
✱ These authors have contributed equally to this work.
Language :
English
Title :
Solid‐state fermentation pro‐enzymes supplementation benefits growth performance, health, and intestinal microbiota of broiler chickens fed wheat‐based diet
This work was supported by China Agriculture
Research System of Ministry of Finance (MOF) and
Ministry of Agriculture and Rural Affairs (MARA)
(CARS‐41), National Key Laboratory of Animal Nutrition
(2004DA125184G2102), and Agricultural Science and
Technology Innovation Program (ASTIPIAS07).
Kiarie, E., Romero, L., & Ravindran, V. (2014). Growth performance, nutrient utilization, and digesta characteristics in broiler chickens fed corn or wheat diets without or with supplemental xylanase. Poultry Science, 93(5), 1186–1196. https://doi.org/10.3382/ps.2013-03715
Wu, S-B., Swick, R. A., Noblet, J., Rodgers, N., Cadogan, D., & Choct, M. (2019). Net energy prediction and energy efficiency of feed for broiler chickens. Poultry Science, 98(3), 1222–1234. https://doi.org/10.3382/ps/pey442
Steenfeldt, S. (2001). The dietary effect of different wheat cultivars for broiler chickens. British Poultry Science, 42(5), 595–609. https://doi.org/10.1080/00071660120088416
Annison, G. (1993). The role of wheat non-starch polysaccharides in broiler nutrition. Australian Journal of Agricultural Research, 44(3), 405–422. https://doi.org/10.1071/ar9930405
Molist, F., De Segura, A. G., Gasa, J., Hermes, R., Manzanilla, E., Anguita, M., & Pérez, J. (2009). Effects of the insoluble and soluble dietary fibre on the physicochemical properties of digesta and the microbial activity in early weaned piglets. Animal Feed Science and Technology, 149(3–4), 346–353. https://doi.org/10.1016/j.anifeedsci.2008.06.015
Choct, M., Kocher, A., Waters, D., Pettersson, D., & Ross, G. (2004). A comparison of three xylanases on the nutritive value of two wheats for broiler chickens. The British Journal of Nutrition, 92(1), 53–61. https://doi.org/10.1079/bjn20041166
Nguyen, H. T., Bedford, M. R., Wu, S-B., & Morgan, N. K. (2022). Dietary soluble non-starch polysaccharide level influences performance, nutrient utilisation and disappearance of non-starch polysaccharides in broiler chickens. Animals, 12(5), 547. https://doi.org/10.3390/ani12050547
Marcotuli, I., Colasuonno, P., Hsieh, Y. S., Fincher, G. B., & Gadaleta, A. (2020). Non-starch polysaccharides in durum wheat: A review. International Journal of Molecular Sciences, 21(8), 2933. https://doi.org/10.3390/ijms21082933
Kermanshahi, H., Shakouri, M. D., & Daneshmand, A. (2018). Effects of non-starch polysaccharides in semi-purified diets on performance, serum metabolites, gastrointestinal morphology, and microbial population of male broiler chickens. Livestock Science, 214, 93–97. https://doi.org/10.1016/j.livsci.2018.04.012
Ward, A. T., & Marquardt, R. R. (1989). Effect of various treatments on the nutritional value of rye or rye fractions. British Poultry Science, 29(4), 709–720. https://doi.org/10.1080/00071668808417099
Esteve-Garcia, E., Brufau, J., Perez-Vendrell, A., Miquel, A., & Duven, K. (1997). Bioefficacy of enzyme preparations containing beta-glucanase and xylanase activities in broiler diets based on barley or wheat, in combination with flavomycin. Poultry Science, 76(12), 1728–1737. https://doi.org/10.1093/ps/76.12.1728
Miafo, A-P. T., Koubala, B. B., Kansci, G., & Muralikrishna, G. (2019). Free sugars and non-starch polysaccharides–phenolic acid complexes from bran, spent grain and sorghum seeds. Journal of Cereal Science, 87, 124–131. https://doi.org/10.1016/j.jcs.2019.02.002
Tapiwa, K. A. (2019). Polyphenols in sorghum, their effects on broilers and methods of reducing their effects: A review. Biomedical Journal of Scientific & Technical Research, 19(1), 14058–14061. https://doi.org/10.26717/bjstr.2019.19.003243
Annison, G., & Choct, M. (1991). Anti-nutritive activities of cereal non-starch polysaccharides in broiler diets and strategies minimizing their effects. World's Poultry Science Journal, 47(3), 232–242. https://doi.org/10.1079/wps19910019
Choct, M. (2006). Enzymes for the feed industry: Past, present and future. World's Poultry Science Journal, 62(1), 5–16. https://doi.org/10.1079/wps200480
Munyaka, P., Nandha, N., Kiarie, E., Nyachoti, C., & Khafipour, E. (2016). Impact of combined β-glucanase and xylanase enzymes on growth performance, nutrients utilization and gut microbiota in broiler chickens fed corn or wheat-based diets. Poultry Science, 95(3), 528–540. https://doi.org/10.3382/ps/pev333
Iji, P., Hughes, R. J., Choct, M., & Tivey, D. (2001). Intestinal structure and function of broiler chickens on wheat-based diets supplemented with a microbial enzyme. Asian-Australasian Journal of Animal Sciences, 14(1), 54–60. https://doi.org/10.5713/ajas.2001.54
Wu, Y., Ravindran, V., Thomas, D., Birtles, M., & Hendriks, W. (2004). Influence of phytase and xylanase, individually or in combination, on performance, apparent metabolisable energy, digestive tract measurements and gut morphology in broilers fed wheat-based diets containing adequate level of phosphorus. British Poultry Science, 45(1), 76–84. https://doi.org/10.1080/00071660410001668897
De Keyser, K., Kuterna, L., Kaczmarek, S., Rutkowski, A., & Vanderbeke, E. (2016). High dosing nsp enzymes for total protein and digestible amino acid reformulation in a wheat/corn/soybean meal diet in broilers. The Journal of Applied Poultry Research, 25(2), 239–246. https://doi.org/10.3382/japr/pfw006
Wang, Z., Qiao, S., Lu, W., & Li, D. (2005). Effects of enzyme supplementation on performance, nutrient digestibility, gastrointestinal morphology, and volatile fatty acid profiles in the hindgut of broilers fed wheat-based diets. Poultry Science, 84(6), 875–881. https://doi.org/10.1093/ps/84.6.875
Yaghobfar, A., & Kalantar, M. (2017). Effect of non-starch polysaccharide (nsp) of wheat and barley supplemented with exogenous enzyme blend on growth performance, gut microbial, pancreatic enzyme activities, expression of glucose transporter (sglt1) and mucin producer (muc2) genes of broiler chickens. Brazilian Journal of Poultry Science, 19(4), 629–638. https://doi.org/10.1590/1806-9061-2016-0441
Huyghebaert, G., Ducatelle, R., & Van Immerseel, F. (2011). An update on alternatives to antimicrobial growth promoters for broilers. The Veterinary Journal, 187(2), 182–188. https://doi.org/10.1016/j.tvjl.2010.03.003
Rosenfelder, P., Eklund, M., & Mosenthin, R. (2013). Nutritive value of wheat and wheat by-products in pig nutrition: A review. Animal Feed Science and Technology, 185(3–4), 107–125. https://doi.org/10.1016/j.anifeedsci.2013.07.011
Jenab, M., & Thompson, L. U. (1998). The influence of phytic acid in wheat bran on early biomarkers of colon carcinogenesis. Carcinogenesis, 19(6), 1087–1092. https://doi.org/10.1093/carcin/19.6.1087
Nadeem, M., Anjum, F. M., Amir, R. M., Khan, M. R., Hussain, S., & Javed, M. S. (2010). An overview of anti-nutritional factors in cereal grains with special reference to wheat-a review. Pakistan Journal of Food Sciences, 20, 54–61.
Stefańska, I., Piasecka-Jóźwiak, K., Kotyrba, D., Kolenda, M., & Stecka, K. M. (2016). Selection of lactic acid bacteria strains for the hydrolysis of allergenic proteins of wheat flour. Journal of the Science of Food and Agriculture, 96(11), 3897–3905. https://doi.org/10.1002/jsfa.7588
Moss, A. F., Chrystal, P. V., Truong, H. H., Liu, S. Y., & Selle, P. H. (2017). Effects of phytase inclusions in diets containing ground wheat or 12.5% whole wheat (pre-and post-pellet) and phytase and protease additions, individually and in combination, to diets containing 12.5% pre-pellet whole wheat on the performance of broiler chickens. Animal Feed Science and Technology, 234, 139–150. https://doi.org/10.1016/j.anifeedsci.2017.09.007
Tang, S., Zhong, R., Yin, C., Su, D., Xie, J., Chen, L., Liu, L., & Zhang, H. (2021). Exposure to high aerial ammonia causes hindgut dysbiotic microbiota and alterations of microbiota-derived metabolites in growing pigs. Frontiers in Nutrition, 8, 8. https://doi.org/10.3389/fnut.2021.689818
Cowieson, A., Ptak, A., Maćkowiak, P., Sassek, M., Pruszyńska-Oszmałek, E., Żyła, K., Świątkiewicz, S., Kaczmarek, S., & Józefiak, D. (2013). The effect of microbial phytase and myo-inositol on performance and blood biochemistry of broiler chickens fed wheat/corn-based diets. Poultry Science, 92(8), 2124–2134. https://doi.org/10.3382/ps.2013-03140
El-Katcha, M. I., Soltan, M. A., El-Kaney, H. F., & Karwarie, E. (2014). Growth performance, blood parameters, immune response and carcass traits of broiler chicks fed on graded levels of wheat instead of corn without or with enzyme supplementation. Alexandria Journal of Veterinary Sciences, 40(1), 95–111. https://doi.org/10.5455/ajvs.48232
Tako, E., Glahn, R. P., Knez, M., & Stangoulis, J. C. (2014). The effect of wheat prebiotics on the gut bacterial population and iron status of iron deficient broiler chickens. Nutrition Journal, 13, 1–10. https://doi.org/10.1186/1475-2891-13-58
Liu, S., Cadogan, D., Péron, A., Truong, H., & Selle, P. (2014). Effects of phytase supplementation on growth performance, nutrient utilization and digestive dynamics of starch and protein in broiler chickens offered maize-sorghum-and wheat-based diets. Animal Feed Science and Technology, 197, 164–175. https://doi.org/10.1016/j.anifeedsci.2014.08.005
Polovinski-Horvatović, M. (2021). A mini review of the effects of nsp and exogenous enzymes in broiler diets on digestibility and some intestinal functions. Contemporary Agriculture, 70(3–4), 116–122. https://doi.org/10.2478/contagri-2021-0017
Abdollahi, M. R., Zaefarian, F., Hunt, H., Anwar, M. N., Thomas, D. G., & Ravindran, V. (2019). Wheat particle size, insoluble fibre sources and whole wheat feeding influence gizzard musculature and nutrient utilisation to different extents in broiler chickens. Journal of Animal Physiology and Animal Nutrition, 103(1), 146–161. https://doi.org/10.1111/jpn.13019
Aftab, U., & Bedford, M. (2018). The use of nsp enzymes in poultry nutrition: Myths and realities. World's Poultry Science Journal, 74(2), 277–286. https://doi.org/10.1017/s0043933918000272
Hussein, E., Suliman, G., Alowaimer, A., Ahmed, S., Abd El-Hack, M., Taha, A., & Swelum, A. (2020). Growth, carcass characteristics, and meat quality of broilers fed a low-energy diet supplemented with a multienzyme preparation. Poultry Science, 99(4), 1988–1994. https://doi.org/10.1016/j.psj.2019.09.007
Ghiasvand, A., Khatibjoo, A., Mohammadi, Y., Akbari Gharaei, M., & Shirzadi, H. (2021). Effect of fennel essential oil on performance, serum biochemistry, immunity, ileum morphology and microbial population, and meat quality of broiler chickens fed corn or wheat-based diet. British Poultry Science, 62(4), 562–572. https://doi.org/10.1080/00071668.2021.1883551
Yang, L., Liu, G., Zhu, X., Luo, Y., Shang, Y., & Gu, X.-L. (2019). The anti-inflammatory and antioxidant effects of leonurine hydrochloride after lipopolysaccharide challenge in broiler chicks. Poultry Science, 98(4), 1648–1657. https://doi.org/10.3382/ps/pey532
Jang, D-I., Lee, A-H., Shin, H-Y., Song, H-R., Park, J-H., Kang, T-B., Lee, S-R., & Yang, S-H. (2021). The role of tumor necrosis factor alpha (tnf-α) in autoimmune disease and current tnf-α inhibitors in therapeutics. International Journal of Molecular Sciences, 22(5), 2719. https://doi.org/10.3390/ijms22052719
Li, Q., Gabler, N. K., Loving, C. L., Gould, S. A., & Patience, J. F. (2018). A dietary carbohydrase blend improved intestinal barrier function and growth rate in weaned pigs fed higher fiber diets. Journal of Animal Science, 96, 5233–5243. https://doi.org/10.1093/jas/sky383
Feldman, G. J., Mullin, J. M., & Ryan, M. P. (2005). Occludin: Structure, function and regulation. Advanced Drug Delivery Reviews, 57(6), 883–917. https://doi.org/10.1016/j.addr.2005.01.009
Chuang, W.-Y., Lin, L.-J., Hsieh, Y.-C., Chang, S.-C., & Lee, T.-T. (2021). Effects of saccharomyces cerevisiae and phytase co-fermentation of wheat bran on growth, antioxidation, immunity and intestinal morphology in broilers. Animal Bioscience, 34(7), 1157–1168. https://doi.org/10.5713/ajas.20.0399
Gao, Q., Wang, Y., Li, J., Bai, G., Liu, L., Zhong, R., Ma, T., Pan, H., & Zhang, H. (2022). Supplementation of multi-enzymes alone or combined with inactivated lactobacillus benefits growth performance and gut microbiota in broilers fed wheat diets. Frontiers in Microbiology, 13, 927932. https://doi.org/10.3389/fmicb.2022.927932
Den Besten, G., Van Eunen, K., Groen, A. K., Venema, K., Reijngoud, D-J., & Bakker, B. M. (2013). The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research, 54(9), 2325–2340. https://doi.org/10.1194/jlr.r036012
Biggs, P., & Parsons, C. (2009). The effects of whole grains on nutrient digestibilities, growth performance, and cecal short-chain fatty acid concentrations in young chicks fed ground corn-soybean meal diets. Poultry Science, 88(9), 1893–1905. https://doi.org/10.3382/ps.2008-00437
Meijer, K., De Vos, P., & Priebe, M. G. (2010). Butyrate and other short-chain fatty acids as modulators of immunity: What relevance for health? Current Opinion in Clinical Nutrition and Metabolic Care, 13(6), 715–721. https://doi.org/10.1097/mco.0b013e32833eebe5
Yip, W., Hughes, M. R., Li, Y., Cait, A., Hirst, M., Mohn, W. W., & Mcnagny, K. M. (2021). Butyrate shapes immune cell fate and function in allergic asthma. Frontiers in Immunology, 12, 299. https://doi.org/10.3389/fimmu.2021.628453
Yacoubi, N., Van Immerseel, F., Ducatelle, R., Rhayat, L., Bonnin, E., & Saulnier, L. (2016). Water-soluble fractions obtained by enzymatic treatment of wheat grains promote short chain fatty acids production by broiler cecal microbiota. Animal Feed Science and Technology, 218, 110–119. https://doi.org/10.1016/j.anifeedsci.2016.05.016
Lee, S., Apajalahti, J., Vienola, K., González-Ortiz, G., Fontes, C., & Bedford, M. (2017). Age and dietary xylanase supplementation affects ileal sugar residues and short chain fatty acid concentration in the ileum and caecum of broiler chickens. Animal Feed Science and Technology, 234, 29–42. https://doi.org/10.1016/j.anifeedsci.2017.07.017
Józefiak, D., Rutkowski, A., Jensen, B., & Engberg, R. (2006). The effect of β-glucanase supplementation of barley-and oat-based diets on growth performance and fermentation in broiler chicken gastrointestinal tract. British Poultry Science, 47(1), 57–64. https://doi.org/10.1080/00071660500475145
Yuan, S., Wang, K.-S., Meng, H., Hou, X.-T., Xue, J.-C., Liu, B.-H., Cheng, W.-W., Li, J., Zhang, H.-M., Nan, J.-X., & Zhang, Q. G. (2023). The gut microbes in inflammatory bowel disease: Future novel target option for pharmacotherapy. Biomedicine & Pharmacotherapy, 165, 114893. https://doi.org/10.1016/j.biopha.2023.114893
Ley, R. E., Turnbaugh, P. J., Klein, S., & Gordon, J. I. (2006). Human gut microbes associated with obesity. Nature, 444(7122), 1022–1023. https://doi.org/10.1038/4441022a
Schaechter, M. (2009). Encyclopedia of microbiology. Academic Press.
Wang, Y., Tao, H., Huang, H., Xiao, Y., Wu, X., Li, M., Shen, J., Xiao, Z., Zhao, Y., Du, F., Ji, H., Chen, Y., Cho, C. H., & Wang, S. (2021). The dietary supplement rhodiola crenulata extract alleviates dextran sulfate sodium-induced colitis in mice through anti-inflammation, mediating gut barrier integrity and reshaping the gut microbiome. Food & Function, 12(7), 3142–3158. https://doi.org/10.1039/d0fo03061a
Meng, Q., Sun, S., Luo, Z., Shi, B., Shan, A., & Cheng, B. (2019). Maternal dietary resveratrol alleviates weaning-associated diarrhea and intestinal inflammation in pig offspring by changing intestinal gene expression and microbiota. Food & Function, 10(9), 5626–5643. https://doi.org/10.1039/c9fo00637k
Muñoz, M., Guerrero-Araya, E., Cortés-Tapia, C., Plaza-Garrido, A., Lawley, T. D., & Paredes-Sabja, D. (2020). Comprehensive genome analyses of sellimonas intestinalis, a potential biomarker of homeostasis gut recovery. Microbial Genomics, 6(12). https://doi.org/10.1099/mgen.0.000476
Zhong, G., Wan, F., Lan, J., Jiang, X., Wu, S., Pan, J., Tang, Z., & Hu, L. (2021). Arsenic exposure induces intestinal barrier damage and consequent activation of gut-liver axis leading to inflammation and pyroptosis of liver in ducks. Science of the Total Environment, 788, 147780. https://doi.org/10.1016/j.scitotenv.2021.147780
Zhang, Y., Liu, Y., Li, J., Xing, T., Jiang, Y., Zhang, L., & Gao, F. (2020). Dietary resistant starch modifies the composition and function of caecal microbiota of broilers. Journal of the Science of Food and Agriculture, 100(3), 1274–1284. https://doi.org/10.1002/jsfa.10139
Ma, L., Ni, Y., Wang, Z., Tu, W., Ni, L., Zhuge, F., Zheng, A., Hu, L., Zhao, Y., Zheng, L., & Fu, Z. (2020). Spermidine improves gut barrier integrity and gut microbiota function in diet-induced obese mice. Gut Microbes, 12(1), 1832857. https://doi.org/10.1080/19490976.2020.1832857
Wu M.-R., Chou T.-S., Huang C.-Y., Hsiao J.-K. A potential probiotic-lachnospiraceae nk4a136 group: Evidence from the restoration of the dietary pattern from a high-fat diet. 2020.
Lin, H., Guo, Q., Ran, Y., Lin, L., Chen, P., He, J., Chen, Y., & Wen, J. (2021). Multiomics study reveals enterococcus and subdoligranulum are beneficial to necrotizing enterocolitis. Frontiers in Microbiology, 12, 752102. https://doi.org/10.3389/fmicb.2021.752102
Van Hul, M., Le Roy, T., Prifti, E., Dao, M. C., Paquot, A., Zucker, J.-D., Delzenne, N. M., Muccioli, G. G., Clément, K., & Cani, P. D. (2020). From correlation to causality: The case of subdoligranulum. Gut Microbes, 12(1), 1849998. https://doi.org/10.1080/19490976.2020.1849998
Durieux, A., Fougnies, C., Jacobs, H., & Simon, J.-P. (2001). Metabolism of chicory fructooligosaccharides by bifidobacteria. Biotechnology Letters, 23(18), 1523–1527. https://doi.org/10.1023/a:1011645608848
Van De Wiele, T., Boon, N., Possemiers, S., Jacobs, H., & Verstraete, W. (2007). Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. Journal of Applied Microbiology, 102(2), 452–460. https://doi.org/10.1111/j.1365-2672.2006.03084.x
Lustgarten, M. S. (2019). The role of the gut microbiome on skeletal muscle mass and physical function: 2019 update. Frontiers in Physiology, 10, 1435. https://doi.org/10.3389/fphys.2019.01435
Li, J., Hu, Q., Xiao-Yu, D., Zhu, L., Miao, Y-F., Kang, H-X., Zhao, X-L., Yao, J-Q., Long, D., & Tang, W-F. (2020). Effect of sheng-jiang powder on gut microbiota in high-fat diet-induced nafld. Evidence-based Complementary and Alternative Medicine, 2020.
Kelly, A., Mccabe, M., Kenny, D., Guan, L., & Waters, S. (2018). 350 examining the effect of a butyrate-fortified milk replacer on gastrointestinal microbiota and fermentation in dairy calves at weaning. Journal of Animal Science, 96(suppl_3), 174–175. https://doi.org/10.1093/jas/sky404.380
Bui, T. P. N., Troise, A. D., Nijsse, B., Roviello, G. N., Fogliano, V., & De Vos, W. M. (2020). Intestinimonas-like bacteria are important butyrate producers that utilize nε-fructosyllysine and lysine in formula-fed infants and adults. Journal of Functional Foods, 70, 103974. https://doi.org/10.1016/j.jff.2020.103974
Yin, X., Ji, S., Duan, C., Tian, P., Ju, S., Yan, H., Zhang, Y., & Liu, Y. (2021). Age-related changes in the ruminal microbiota and their relationship with rumen fermentation in lambs. Frontiers in Microbiology, 12, 679135. https://doi.org/10.3389/fmicb.2021.679135
Toya, T., Corban, M. T., Marrietta, E., Horwath, I. E., Lerman, L. O., Murray, J. A., & Lerman, A. (2020). Coronary artery disease is associated with an altered gut microbiome composition. PLoS One, 15(1), e0227147. https://doi.org/10.1371/journal.pone.0227147
Atallah, E., Mahayri, T., Fliegerová, K., Mrázek, J., Addeo, N., Bovera, F., & Moniello, G. (2023). The effect of different levels of hermetia illucens oil inclusion on caecal microbiota of Japanese quails (coturnix japonica, gould, 1837). Journal of Insects as Food and Feed, 1, 1–19.
Xia, B., Zhong, R., Wu, W., Luo, C., Meng, Q., Gao, Q., Zhao, Y., Chen, L., Zhang, S., Zhao, X., & Zhang, H. (2022). Mucin o-glycan-microbiota axis orchestrates gut homeostasis in a diarrheal pig model. Microbiome, 10, 1–21. https://doi.org/10.1186/s40168-022-01326-8