
Received: 27 October 2023 - Revised: 25 January 2024 - Accepted: 5 February 2024

DOI: 10.1002/aro2.55

ART I C L E

Solid‐state fermentation pro‐enzymes supplementation
benefits growth performance, health, and intestinal
microbiota of broiler chickens fed wheat‐based diet

Jiaheng Li1,2 | Guosong Bai1 | Yan Gao3 | Qingtao Gao1 | Ruqing Zhong1 |

Liang Chen1 | Yunlong Wang3 | Teng Ma1 | Hongfu Zhang1

1State Key Laboratory of Animal Nutrition,
Institute of Animal Science, Chinese Academy
of Agricultural Sciences, Beijing, China

2Precision Livestock and Nutrition Unit,
Gembloux Agro‐Bio Tech, TERRA Teaching
and Research Centre, Liège University,
Gembloux, Belgium

3Hangzhou Bio‐Com Biotechnology Co. LTD,
Hangzhou, China

Correspondence

Teng Ma, Institute of Animal Sciences,
Chinese Academy of Agricultural Sciences,
No. 2 Yuan Ming Yuan West Road, Haidian
District, Beijing 100193, China.
Email: mateng@caas.cn

Funding information

National Key Laboratory of Animal Nutrition,
Grant/Award Number: 2004DA125184G2102;
China Agriculture Research System of Ministry
of Finance (MOF) and Ministry of Agriculture
and Rural Affairs (MARA), Grant/Award
Number: CARS‐41; Agricultural Science and
Technology Innovation Program, Grant/Award
Number: ASTIPIAS07

Abstract
Wheat as a kind of diet material can be used for broiler production. How-
ever, due to non‐starch polysaccharides in wheat, wheat may lead to lower
growth performance and worth health. To reverse the negative effect, solid‐
state fermentation pro‐enzymes were added. In this experiment, growth
performance, intestinal health‐related genes, short chain fatty acids
(SCFAs) and intestinal microbiota were detected to find the effects of wheat
meal and combined with enzymes on broiler chickens from 15 to 42 days of
age. A total of 432 1‐day‐old Arbor Acres broiler chickens were fed corn‐
based diet (CD) for 14 days as the preparation stage of the experiment.
Then, they were randomly divided into three groups and fed three different
kinds of diets which were corn‐based diet (CD group), wheat‐based diet
(WD group), and SFP enzymes supplementation in WD (EnzymesþWheat‐
based diet group). The results showed that compared with broilers in CD
group, broilers in WD group had lower weight gain and higher Feed con-
version ratio (p < 0.05) during the whole experimental period especially
from day 15 to day 21, but there was no significant effect on feed intake
(p > 0.05). Moreover, SFP enzymes decreased the spleen index (p < 0.05).
Wheat also had trends to decrease the expression of ZO‐1 (p = 0.096) and
increase the concentrations of acetate (p < 0.05), butyrate (p < 0.05) and
total SCFAs (p < 0.05), in which SFP enzymes caused the opposite results
except for butyrate, and SFP enzymes even increased the expression of
ZO‐1 (p < 0.001) and OCCLUDIN (p = 0.075) and decreased the expres-
sion of TNF‐α (p < 0.01). Meanwhile, wheat enhanced the abundances of
Barnesiella and Bifidobacterium (p < 0.05) and inhibited the abundances of
Flavonifractor, Sellimonas, Lachnospiraceae_NK4A136_group, Sub-
doligranulum, and Ruminococcus_gauvreauii_group (p < 0.05), and SFP
enzymes could reverse the negative effects, and the changes in microbiota
could explain the other different parameters. Collectively, wheat results in
inflammation and worse growth performance, but SFP enzymes supple-
mentation in WD benefits chickens' growth performance by improving in-
testinal barrier function, decreasing inflammation, modulating cecal
microbiota and SCFAs production.
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INTRODUCTION

Wheat as a poultry diet material has been widely used
worldwide, it could apply energy and nutrients for broiler
chickens. Meanwhile, the nutrients in wheat diet are
higher than that in corn diet such as crude protein (CP),
but the digestibility of wheat is fewer [1]. For example,
the apparent metabolic energy (AME) and net energy
(NE) of wheat for broiler chickens are 3331.66 Kcal/kg
and 2655.29 Kcal/kg which are lower than that of corn's
3623.24 Kcal/kg and 2920.58 Kcal/kg [2]. Moreover, the
significant disadvantage of wheat is that chickens fed
Wheat‐based diet (WD) may get lower growth perfor-
mance and more inflammation which leads to diarrhea
affecting the whole production system compared with
which fed Corn‐based diet (CD) [3]. One of the reasons
is that there are more antinutritional factors, which
mainly refer to non‐starch polysaccharides (NSP), in
wheat [4].

NSP can be divided into soluble non‐starch poly-
saccharides (SNSP) and insoluble non‐starch poly-
saccharides (INSP) [5], in which SNSP such as
arabinoxylans as the major component show the main
anti‐nutritional effects which can impair chickens'
growth performance and health [4, 6, 7]. In specific, the
SNSP in wheat are almost twice than in corn [8], these
SNSP can combined with water in gut to increase the
intestinal viscosity, which may increase the feed's AME
and change the microflora [8, 9]. Therefore, to reduce
the anti‐nutritional effects, many experiments have
been conducted, and there have been several methods
such as chemical method, soaking method, and anti-
biotics method [10–12]. However, these methods had
many disadvantages such as pollution problem
(chemical method) [13], lower efficiency (soaking
method) [10], and policies forbidden (antibiotics
method) [14]. Except these methods, there were many
other suggestions, in which the efficient way should be
adding enzymes.

NSPases could successfully decrease the negative
effect of NSP. NSPases such as xylanase and β‐glu-
canase can decompose the NSP in gut, therefore it may
reverse wheat's negative effects on broiler chickens
[15]. Meanwhile, Munyaka et al. [16] found that xyla-
nase and β‐glucanase could benefit chickens' body
weight and feed conversion ratio (FCR), and there were
many similar results from other experiments [17, 18],
and De Keyser et al. [19] found that after NSPases
supplementation, the growth performace of chickens
were equal to control group. Meanwhile, NSPases had

many other benefits on chickens such as and
increasing the concentrations of short chain fatty acids
(SCFAs) [20]. Yaghobfar and Kalantar [21] also found
that NSPases could decrease the abundances of mi-
crobes in gut, which was because NSPases improved
nutrient utilization and selectively reduced microbial
population to maintain chickens' health [22].

However, NSP in wheat are various such as arabi-
noxylan, beta‐glucan, cellulose, and pectin [23], there-
fore single NSPase could not eliminate the effects of
NSP. Furthermore, antinutritional factors in wheat are
not only NSP but also other factors such as allergic
protein, trypsin inhibitors, and phytic acid [24–26].
Although their content is few, they also be harmful for
host's health or they could cause the lower nutrients
digestibility [25], and some enzymes such as phytase
and protease could help host to digest these antinutri-
tional factors to benefit host [26, 27]. Therefore, to
benefit broiler chickens' health and growth, the supplied
enzymes in diet should be made of various enzymes.
solid‐state fermentation pro‐enzymes (SFP enzymes)
were produced commercially by Asperjillus Niger after
solid fermentation technology, it contains many en-
zymes such as xylanase, β‐Glucoamylase, pectinase,
β‐mannanases, cellulose enzyme, α‐galactosidase,
and protease. It could help host to digest many anti-
nutritional factors to eliminate the negative effects.
However, the mechanisms of SFP enzymes on broilers'
health should be further studied.

Therefore, this study investigated the effects of SFP
enzymes on growth performance, slaughter perfor-
mance, intestinal barrier and inflammation genes
expression, intestinal microorganism, and SCFAs in
broilers chickens fed WD from 15 days of age to
42 days of age.

MATERIALS AND METHODS

Experimental broilers and husbandry
practices

There were 432 broiler chicks (Arbor Acres) from same
hatchery which were randomly allocated into cages with
12 broilers per cage, and all chicks were fed from 1 day
to 42 days of age in which pre‐feeding period were
began from day 1 to day 14. All broilers were fed in
2‐level cages (150 � 70 � 60 cm). To eliminate 2‐
level's effects, the treatments of 2 cages in same col-
umn were same. Feed and water were supplied ad
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libitum, and the light was scheduled for 1‐h darkness
and 23‐h light per day during the whole experiment. The
temperature, humidity, and air flow rate were auto-
matically controlled by fans and cooling pad. The tem-
perature was gradually decreased from 32°C on day
1–24°C on day 28, then maintained 24°C until day 42.

Experiment design and dietary treatment

During the first 14 days, chicks were fed CD. On day
15, the chicks were weighed individually and allocated
into 36 cages (3 treatments � 6 columns � 2 cages) by
random stratification based on their weight. There were
three treatments which were (1) CD as control group,
(2). WD, (3). Enzymes þWheat‐based diet (EWD), and
each treatment had 12 replicate cages. All ingredients
and composition of grower and finisher diets are pre-
sented in Table S1 according to Feeding standard of
Chicken (NY/T 33–2004). All diets were made to pellet
form without antibiotics.

SFP enzymes supplied

SFP enzymes were added as 0.16 kg/t in EWD group,
which were provided by Hangzhou Bio‐Com Biotech-
nology Co. LTD. The main types and content of SFP
enzymes are shown in Table S2.

Sample collection

Weights of chicks were measured on day 14, 28, 42.
Total feed intake was also measured on the same day.
Mortality was recorded with cage, and dead broilers
were weighed. On day 42, 18 broilers (6 random
broilers from each treatment in higher level cage of
each column) were selected based on their body weight
which was closed to the average. After weighed, they
were euthanized by intravenous injection of sodium
pentobarbitone. Then, they were bled and sub‐scalded
(removing feathers) to determine net weight. After
giblets removed, the broilers were reweighed to calcu-
late dressing percentage. Other samples were
collected from other 24 broilers (8 broilers from each
treatment in higher level cage of each column except
for the third and fourth columns in which two cages
were selected) whose body weight was closed to the
average. Slaughter process was similar except sub‐
scalded. Samples of intestinal contents from caeca
and mucosa from jejunum were collected on day 42,
and snap frozen in liquid nitrogen and transferred to
−80°C. The organ indexes of 18 broilers were calcu-
lated by the ratio of giblets weight to body weight (%).
Dressing percentage with giblets was calculated by the

ratio of body weight after slaughter to body weight (%),
and dressing percentage without giblets was calculated
by the ratio of body weight without giblets to body
weight after slaughter (%).

RNA extraction and real‐time quantitative
PCR detecting system (qPCR)

Tissue/Cell Total RNA Mini Kit (Gene‐Better) was used
to extract the mRNA of jejunal mucosa. Thereafter, 2 μg
total mRNA was reverse transcribed using Prime Script
RT reagent Kit (Takara). Primers were produced
commercially (Sangon Biotech) (Table S3). Then, 1 μL
cDNA was mixed by 5 μL SYBR Premix Ex Taq II, 0.4 μL
each of forward and reverse primers (final concentration
of 0.4 μM for each primer), and 3.2 μL double distilled
water to react for qPCR. QuantStudio 7 Flex (Thermo-
fisher) was used for amplification and detection under the
following conditions: (1). Pre‐denaturation stage: at 95°C
for 30 s. (2). PCR stage (40 cycles): denaturation at 95°C
for 5 s, followed by annealing and extension at 60°C for
30 s. (3). Melt curve: at 95°C for 15 s, 60°C for 1 min, and
95°C for 15 s β‐Actin was used as reference gene to
normalize the gene's Ct values. The relative gene
expression was calculated using 2−ΔΔCt method.

SCFAs concentration

Methods were according to previous study [28], ultra-
pure water was used to extract digesta samples from
broilers' cecum (around 0.5 g). Then, they were cen-
trifugated at 10,000 � g. After that, they were mixed
with Metaphosphoric acid (25%, w/v), in which the
amounts of extracts were nine times more than acid.
Then, mixture was centrifugated at 12,000 � g, and
supernatant was filtered through the 0.45‐μm Milled‐LG
filter (Millipore). Finally, Agilent 7890 N gas chromato-
graph (Agilent) was used to analyze SCFAs.

Intestinal microbiota

DNA of cecal digesta samples were extracted by
DNA isolation kit (Qiagen), primers were 338F（50‐
GTGCCAGCMGCCGCGG‐3’）and 806R（50‐CCGT
CAATTCMTTTRAG TTT‐3’）to amplify V3–V4 region of
bacterial 16S rRNA genes. After that, samples were
sequenced on the Illumina HiSeq sequencing platform
(Illumina). QIIME (version 1.70) was used to analyze raw
data. UPARSE (version 7.1) was used to cluster opera-
tional taxonomic units (OTUs), and UCHIME (version
7.1) was used to remove chimeric sequences. The data
was deposited into NCBI Sequence Read Archive
database (Accession number: PRJNA898836).
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Statistical analysis

The normality of data was calculated by Shapiro‐Wilk
test, and based on the normality, statistical signifi-
cance was determined by Student's T test or Mann‐
Whitney test using IBM SPSS Statistics. The data
were adjusted based on mortalities. GraphPad Prism 8
was used to make figures of SCFAs result and mRNA
gene expression result. Majorbio I‐Sanger Cloud Plat-
form (www.i‐sanger.com) was used to analyze mi-
crobes. Wilcoxon rank‐sum test was used to analyze
alpha diversity using four indexes (Sobs, Shannon,
Chao and Ace) and the significantly different microbes.
Beta diversity was determined by unweighted unifrac
and analysis of similarities test. Linear discriminant
analysis Effect Size (LDEfSe) was used to further
analyze differences.

RESULTS

Growth performance

The growth performance of all broilers (n = 12) in three
groups is shown in Table 1. There was no significant
difference during the whole experiment for the feed
intake (p > 0.05). However, for other parameters,
broilers in WD group showed lower weight gain and
higher FCR from day 15 to day 28 (p < 0.05) compared
with which in CD group. Meanwhile, broilers in EWD

group showed significantly higher weight gain and
lower FCR from day 15 to day 28 (p < 0.05) compared
with which in WD group. What is more, from day 28 to
42 period, SFP enzymes showed trend to increase daily
weight gain compared with wheat (p = 0.078), and SFP
enzymes even significantly increased daily weight gain
and decreased FCR (p < 0.05) compared with wheat
during the whole experimental period (from day 15
to 42).

Slaughter performance and organ indexes

The slaughter performance of broilers (n = 6) in three
groups is shown in Table 2. Except for the body weight
before slaughter and spleen index, there was no sig-
nificant difference for other data (p > 0.05). Compared
with broilers in WD group, broilers in EWD group had
significantly heavier body weight (p < 0.05) and lower
spleen index (0.12%/0.08%) (p < 0.05).

Intestinal barrier and inflammation genes
expression

The intestinal barrier and inflammation genes expression
of jejunum of broilers (n= 8) in three groups are shown in
Figure 1. The trends showed that compared with broilers
in WD group, broilers in EWD group had higher expres-
sion levels of OCCLUDIN (p = 0.075). Meanwhile,

TABLE 1 Effects of wheat diet supplemented with SFP enzymes or not on growth performance in broiler chickens.

Parameters 1. CD group 2. WD group 3. EWD group
p value
(WD VS CD)

p value
(EWD VS WD)

Body weight (g/bird)

Day 14 407.52 � 8.51 404.82 � 12.00 407.58 � 10.82 0.531 0.559

Day 28 1260.55 � 57.48 1186.05 � 67.85 1232.66 � 34.33 0.008 0.045

Day 42 2180.30 � 158.51 2089.46 � 122.30 2225.16 � 158.65 0.130 0.028

Daily weight gain (g/bird/day)

Day 15–28 65.62 � 4.56 60.13 � 4.85 63.47 � 2.42 0.009 0.044

Day 28–42 65.70 � 10.44 64.53 � 6.56 70.89 � 9.95 0.746 0.078

Day 15–42 65.66 � 5.76 62.39 � 4.26 67.32 � 5.77 0.129 0.026

Daily feed intake (g/bird/day)

Day 15–28 95.74 � 3.26 93.77 � 5.04 93.81 � 4.01 0.269 0.985

Day 28–42 127.35 � 11.63 122.24 � 18.03 128.02 � 14.51 0.418 0.397

Day 15–42 112.13 � 6.91 108.53 � 9.39 111.55 � 8.37 0.297 0.416

Feed conversion ratio (g feed/g gain)

Day 15–28 1.46 � 0.06 1.56 � 0.09 1.48 � 0.07 0.004 0.019

Day 28–42 1.97 � 0.23 1.90 � 0.24 1.81 � 0.10 0.481 0.283

Day 15–42 1.71 � 0.10 1.74 � 0.12 1.66 � 0.06 0.546 0.039

Note: Data are presented as mean � SD. CD Group: corn‐based diet group, WD Group: wheat‐based diet group, EWD Group: solid‐state fermentation
pro‐enzymes (SFP enzymes) supplementation in wheat‐based diet group. n = 12.
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TABLE 2 Effects of wheat diet supplemented with SFP enzymes or not on slaughter performance and organ indexes in broiler chickens.

Parameters 1. CD group 2. WD group 3. EWD group
p value
(WD VS CD)

p value
(EWD VS WD)

Body weight before slaughter (g) 2179.56 � 205.45 2213.88 � 203.99 2432.83 � 124.31 0.735 0.039

Body weight after slaughter (g) 2026.78 � 205.08 2050.63 � 172.09 2255.40 � 89.94 0.800 0.033

Body weight without giblets (g) 1202.39 � 126.08 1169.05 � 95.27 1302.63 � 71.76 0.552 0.014

Dressing percentage with giblets (%) 92.95 � 1.89 92.71 � 2.41 94.19 � 0.45 0.823 0.130

Dressing percentage without giblets (%) 59.32 � 1.57 57.19 � 4.46 58.73 � 1.49 0.198 0.475

Abdominal fat (%) 3.34 � 1.32 3.74 � 0.74 3.73 � 0.63 0.460 0.982

Heart (%) 0.40 � 0.07 0.44 � 0.11 0.38 � 0.06 0.335 0.261

Liver (%) 2.05 � 0.24 2.34 � 0.43 2.10 � 0.43 0.105 0.332

Spleen (%) 0.10 � 0.02 0.12 � 0.02 0.08 � 0.02 0.193 0.002

Lungs (%) 0.26 � 0.07 0.31 � 0.06 0.26 � 0.06 0.161 0.167

Kidneys (%) 0.25 � 0.06 0.22 � 0.09 0.22 � 0.09 0.391 0.968

Proventriculus (%) 0.34 � 0.07 0.34 � 0.06 0.33 � 0.05 0.850 0.934

Gizzard (%) 1.31 � 0.16 1.25 � 0.09 1.18 � 0.16 0.349 0.339

Note: Data are presented as mean � SD. CD Group: corn‐based diet group, WD Group: wheat‐based diet group, EWD Group: solid‐state fermentation
pro‐enzymes (SFP enzymes) supplementation in wheat‐based diet group. n = 6.

F I GURE 1 Effects of wheat diet supplemented with SFP enzymes or not on intestinal barrier and inflammation gene expression in broiler
chickens. CD: corn‐based diet group, WD: wheat‐based diet group, EWD: solid‐state fermentation pro‐enzymes (SFP enzymes)
supplementation in wheat‐based diet group. Data are presented as mean � SD, and statistical significance was determined by the Student's T
test; n = 8. *p < 0.05, **p < 0.01 and ***p < 0.001.

SOLID‐STATE FERMENTATION PRO‐ENZYMES BENEFIT BROILER - 5

 28355075, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aro2.55 by Institute of A

nim
al Science,, W

iley O
nline L

ibrary on [08/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



broilers in EWD group had two significantly differentially
expressed genes which were higher expression of ZO‐1
(p < 0.001) and lower expression of TNF‐α (p < 0.01)
compared with broilers in WD group, in which the trend
also showed that broilers in WD group had lower
expression of ZO‐1 compared with which in CD group
(p = 0.096). For the expressions of other genes, there
were no significant differences (p > 0.05).

Concentrations of SCFAs

The concentrations of SCFAs in the cecum of broilers in
three groups are shown in Figure 2. Broilers in CD
groups had significantly lower concentrations of ace-
tate, butyrate, and total SCFAs compared with which in
WD group (p < 0.05). The trends showed that for ac-
etate and total SCFAs, broilers in EWD group had lower
concentrations compared with which in WD group but
not to the control level, and for butyrate, broilers in EWD
group had highest concentration. For other parameters,
there were no significant differences.

Intestinal microbes in broilers

The microbes in cecum of broilers (n= 8) in three groups
are shown in Figure 3. Both cecal microbes of chickens
in WD group and EWD group were similar, and microbes

in both two groups were different from that in CD group
(Figure 3A). Meanwhile, even though broilers in three
groups had similar OTUs (Figure 3B), broilers in CD
group had highest abundance of microbes and broilers
in EWD group had lowest data (Figure 3C). The specific
different microbes at genus and phylum level are shown
in Figure 3D, in which broilers in EWD group showed
much similar community with broilers in CD group. For
example, unclassified_f__Lachnospiraceae showed
higher both in broilers in CD group and EWD group and
Actinobacteriota showed opposite trends. Moreover, 10
microbes were found significantly differential in TOP 50
abundance of microbes at genus level (WD VS CD), and
only two microbes were found significantly differential
comparing between EWD group and WD group
(Figure 4A). Thereafter, we further analyzed the specific
abundance of each significantly differential microbes
(Figure 4B), in which only four genera in WD VS CD
result which was significantly decreased by wheat can
be increased by SFP enzymes, and only two genera
were significantly increased by wheat in which only
Bifidobacterium could be decreased by SFP enzymes.
Other genera were all decreased by wheat, but they
cannot be increased by SFP enzymes. In EWD VS WD
result, Eubacterium_hallii_group only significantly
increased in broilers in EWD group, and Rumino-
coccus_gauvreauii_group significantly abundant in both
CD croup and EWD group. The main microbes of each
group are shown in Figure 4C.

F I GURE 2 Effects of wheat diet supplemented with SFP enzymes or not on the concentration of short chain fatty acids in broiler chickens.
CD: corn‐based diet group, WD: wheat‐based diet group, EWD: solid‐state fermentation pro‐enzymes (SFP enzymes) supplementation in
wheat‐based diet group. Unit: μmol/g digesta. Data are presented as mean � SD, and statistical significance was determined by the Student's
T test; n = 8. *p < 0.05.
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DISCUSSION

Basically, there were many studies showed the effects
of WD with or without enzymes on broiler chickens [16,
29–31]. However, the results were inconformity. Our
result showed that wheat could influence chickens'
growth performance and health, and SFP enzymes
could reverse some of these negative effects.

Firstly, although the differences from day 28 to day
42 were not significant, the trends were same as the
significantly differential parameters which were from
day 15 to day 28. In specific, our study found that broiler
chickens fed WD had lower weight gain and higher FCR
but no significant effect on feed intake compared with

CD. This result is similar with other studies [30, 32]. The
reason is that NSP in wheat can increase the intestinal
viscosity to reduce the nutrients digestibility and ab-
sorption [33]. Meanwhile, in this experiment, the wheat
particle size was coarse which could cause higher feed
intake [34]. Besides, some studies found that NSPases
can reduce the effect of NSP's negative effects to
benefit chickens' growth performance [1, 16] which are
similar to our results. In our experiment, SFP enzymes
supplementation could improve chickens' weight gain
and FCR to the control group's (CD) level or even better
especially from day 15 to day 28 which was significantly
different. Meanwhile, although from day 28 to day 42,
the difference was not significant, SFP enzymes had

F I GURE 3 Effects of wheat diet supplemented with SFP enzymes or not on intestinal microbiome in broiler chickens. (A) Venn diagrams of
each group. (B) PCoA results of each group. (C) α‐Diversity of each group. (D) Community analysis of each group. CD: corn‐based diet group,
WD: wheat‐based diet group, EWD: solid‐state fermentation pro‐enzymes (SFP enzymes) supplementation in wheat‐based diet group. Data
are presented as mean � SD, and statistical significance was determined by the Wilcoxon rank‐sum test; n = 8. *p < 0.05, **p < 0.01 and
***p < 0.001.
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trends to increase weight gain during this period, and in
the whole period, the SFP enzymes showed signifi-
cantly effect on weight gain and FCR improving. The
better growth performance for the chickens in EWD
group is because SFP enzymes help chickens to digest
NSP. Specifically, firstly, the digested NSP are nutrients
to benefit chickens [16, 35]. Then, there is NSP in corn
to affect chickens, SFP enzymes make the content of
NSP in wheat even lower than in corn to benefit
chickens [33]. However, some studies found that
NSPases had no effect on chickens' growth perfor-
mance [19, 21], whose reasons could be enzymes'
concentration or activity or other factors. Therefore,
SFP enzymes supplementation improved broiler
chickens' growth performance especially in early stage
(15–24 days of age).

Slaughter performance and organ indexes of broiler
chickens were significant for their commercial value

and health. Previous studies showed that WD with or
without enzymes do not change chickens' slaughter
performance [30, 36]. Similarly, in our result, there was
no significant difference for chickens' slaughter perfor-
mance except body weight. The reason for different
body weight is linked to broilers' growth performance.
What is more, previous studies found that wheat with or
without enzymes did not change the organ indexes
compared with corn [30, 37]. In contrast, the present
result showed that wheat could increase the spleen
index which is caused by the higher inflammation [38],
and SFP enzymes could reverse this negative effect.

To determine the intestinal health, we detected the
related genes expressions. We found that wheat might
promote inflammation by enhancing the expression of
TNF‐α which is a kind of pro‐inflammatory cytokine as a
major regulator of inflammatory responses main factors
leading to inflammation [39]. Meanwhile, wheat had

F I GURE 4 The specific significantly differential microbes. (A) Significantly differential microbes in different groups (WD VS CD, EWD VS
WD). (B) The abundances of significantly differential microbes in three groups. (C) LDfSe results of each group. CD: corn‐based diet group,
WD: wheat‐based diet group, EWD: solid‐state fermentation pro‐enzymes (SFP enzymes) supplementation in WD group, LDfSe: Linear
discriminant analysis Effect Size. Data are presented as proportions' mean and statistical significance was determined by the Wilcoxon rank‐
sum test; n = 8. *p < 0.05 and **p < 0.01.
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trend to reduce the expression of ZO‐1 which is a main
factor of tight junction to benefit intestinal barrier [40].
Contrarily, SFP enzymes showed ability to significantly
increase the expression of ZO‐1 and decrease the
expression of TNF‐α. Furthermore, it can enhance the
expression of OCCLUDIN which is another represen-
tative tight junction to maintain gut barrier function [41].
Therefore, it was showed that SFP enzymes can adjust
these genes expressions to maintain intestinal health.
Similarly, Chuang et al. [42] found that NSPases can
promote the expreesions of OCCLUDIN and CLAUDIN,
and decrease the expreesions of IL‐1β and IL‐6, and
Gao et al [43] found that NSPases can inhibit the
expression of TNF‐α. To sum up, wheat negatively
affected the intestinal health of broilers by affecting the
intestinal barrier function and inflammation, but SFP
enzymes can eliminate this effect.

The SCFAs are affected by many reasons such as
microbes, environment, and broiler's age, and it can
affect animals gut barrier function, energy metabolism,
and immunity [44]. In this study, WD resulted in higher
concentrations of acetic, butyrate, and total SCFAs but
lower or similar content of other SCFAs, which is similar
with other research [1, 45]. SFP enzymes could reverse
the increasing of acetate and total SCFAs caused by
wheat but not to the level of control group, and SFP
enzymes did not decrease the concentration of butyrate
which is significant to animals' immune system such as
inhibiting pro‐inflammatory immune cells of whole in-
testine [46, 47]. Many researchers found that enzymes
increase the content of acetic, butyrate, and total
SCFAs [20, 48, 49] which are similar with this experi-
ment's result. Differently, based on the discovery of
Józefiak et al. [50] which showed that SCFAs in
chickens fed barley or oats could not be affected, our
result may rely on the different types of enzymes and
wheat.

The microbes in the intestines of animals are
considered essential for gut health and nutrient ab-
sorption. The changes of microbes in cecum can affect
the health of not only whole intestine but also whole
body [51]. Therefore, to find the bacterial evidence
leading to the differences above, we analyzed the mi-
crobes in broilers' cecum. The result showed that
broilers in CD group had significantly highest α‐diversity
and chickens in EWD group's α‐diversity were lowest.
Therefore, wheat could decrease the diversity of cecal
microbes. SFP enzymes seem focused on affecting
particular microbes, which is because although en-
zymes lower the intestinal viscosity to benefit microbes,
they mainly promote the growth of some competitive
probiotics communities and limit the nutrients absorbed
by other bacteria [16]. Therefore, fewer cecal bacteria
existed in the chickens of EWD group. The community
abundance at Phylum level results showed that wheat
would change the composition of microbes such as
decreasing Firmicutes and increasing Bacteroidota.

SFP enzymes further decreased the microbial diversity
but benefited the growth of some probiotics. The ratio of
Firmicutes to Bacteroidota is linked to fat produced, and
obesity individuals have higher ratio [52]. Therefore,
broilers fed WD may have more adipose tissue. Be-
sides, based on the community abundance results,
wheat promoted the growth of Actinobacteriota which is
main pathogen of animals [53], and SFP enzymes
could decrease it to normal level to benefit animals.
What is more, SFP enzymes increased the abundance
of unclassified_f__Lachnospiraceae to the high abun-
dance even higher than chickens in CD group.
Unclassified_f__Lachnospiraceae is negatively corre-
lated with the expression of TNF‐α [54], which is the
reason of the enhancing of its expression in the broilers
of WD and CD group and SFP enzymes reduced its
expression.

In specific, in 10 differentially abundant microbes
(WD VS CD), there were four kinds of bacteria
decreased by wheat but increased by SFP enzymes
which were Flavonifractor, Sellimonas, Lachnospir-
aceae_NK4A136_group, and Subdoligranulum in
which Flavonifractor is related to carbohydrate meta-
bolism to promote growth [55], and Sellimonas is a
potential biomarker to adjust intestinal recovery [56].
Sellimonas can be decreased when the host's gut is
damaged by arsenic exposure [57], which shows that
the abundance of Sellimonas is necessary for intestinal
health. Similarly, Zhang et al. [58] also found that CD
can increase the abundance of Sellimonas. Moreover,
Lachnospiraceae_NK4A136_group as a kind of pro-
biotic can maintain intestinal health and improve
broilers' growth [59, 60]. Finally, Subdoligranulum is
found to colonize in healthy host to maintain animals'
metabolism especially SCFAs [61], and it is linked to
metabolic health improving [62]. Therefore, WD
reduced the proportion of these probiotics which
affected the intestinal health and growth performance,
and SFP enzymes promoted the proliferation of these
intestinal probiotics which related to carbohydrate
metabolism and gut health in WD. These may be
important reasons why SFP enzymes increase pro-
duction performance by increasing these taxa of mi-
croorganisms. However, the detailed microbial
mechanism needs further analysis. What is more, the
abundances of other probiotics were decreased by
wheat, but SFP enzymes could not make them colonize
again. What is more, many studies showed that inulin
and fructooligosaccharide, which are two kinds of NSPs
in wheat, can stimulate Bifidobacterium to absorbed Fe
[63, 64]. Tako et al. [31] also found that wheat promotes
Bifidobacterium in broiler chickens. In our result,
broilers in WD group had significantly higher Bifido-
bacterium, and SFP enzymes could decrease them.
The reason might be the digestion of NSP of broilers in
EWD group. Moreover, Bifidobacterium is a kind of
SCFAs producer which can explain the higher
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concentrations of acetate and total SCFAs in WD group
[63]. Meanwhile, Barnesiella, which was increased by
wheat and did not be affected by SFP enzymes, has
ability to produce butyrate [65]. Therefore, the chickens
in WD and EWD group had higher butyrate. Moreover,
CD also enhanced the abundances of some SCFAs
producer which were norank_f__Erysipelotrichaceae
[66], Shuttleworthia [67], and Intestinimonas [68] to
benefit chickens' growth, but SFP enzymes could not
affect them after which were decreased by wheat.
Therefore, SFP enzymes seems to affect the pro-
liferations of specific probiotics. Finally, in 2 differen-
tially abundant microbes (EWD VS WD), the
abundance of Ruminococcus_gauvreauii_group only
significantly decreased in WD group compared with
other two groups, and this genus is well known as a
SCFAs producer [69], which may explain why broilers in
CD group had similar concentrations of other SCFAs
compared with which in WD group. This genus is also
showed as the probiotic to maintain hosts' health such
as the strong associate between the deficiency of it and
coronary artery disease [70], which proves the benefits
of SFP enzymes again. Moreover, Eubacterium_hallii_
group was only enriched by SFP enzymes in our result
which is a butyrate producer [71], which can explain the
highest butyrate of broilers in EWD group, meanwhile,
Eubacterium_hallii_group was found that it is positively
associated with ZO‐1 and OCCLUDIN [72] which can
explain the highest expressions of these two genes in
broilers in EWD group, and it is necessary to maintain
gut metabolic balance [71], which again showed that
SFP enzymes seem focused on affecting particular
probiotics. Therefore, compared with broilers in WD
group, chickens in CD group had more probiotics to
benefit health and growth, and SFP enzymes could
increase some of these probiotics. Meanwhile, prolif-
eration of all probiotics explains the results of mRNA
expression, SCFAs concentrations and intestinal health
or growth performance improving.

CONCLUSION

In this study, wheat could decrease weight gain and in-
crease FCR of broiler chickens, and it also led to
inflammation, whereas SFP enzymes could reverse
these negative effects. Meanwhile, SFP enzymes sup-
plementation in WD could benefit tight junction genes
expression and inhibit TNF‐α expression to benefit
chickens. Finally, SFP enzymes could promote prolifer-
ation of probiotics which improved SCFAs production
and intestinal health in wheat‐base diet chickens.

To sum up, WD results in lower growth performance
than CD, and SFP enzymes supplementation in WD
benefits chickens' growth performance and health by
affecting the growth of particular microbes.
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