Dairy farms; Food safety; Milk processing; Milk products; Escherichia coli; raw milk butter; cleaning and disinfection practices
Abstract :
[en] Description of the subject. According to Regulation (EC) No 2073/2005, Escherichia coli must be enumerated in raw milk butter before sales. Hygiene of batches is acceptable when a maximum of two samples out of five have levels of E. coli between 10 and 100 cfu.g-1. E. coli is still a threat to the safety of raw milk butter. Objectives. This study aimed to identify sources of E. coli in six farms facing recurrent contaminations in butter. Method. Farms were visited three times between March and May 2021. Surface samples and dairy products samples were collected throughout the process for E. coli enumeration and assessment of potential correlations between equipment contamination and hygienic quality of food products. Results. Two major sources of contamination were identified: the lack of efficacy of cleaning and disinfection practices on milk pipelines, junctions and cream separators, and absence of milk cooling in case of time-lapse of more than 2 h between milking and skimming. The use of lactic acid starters could be a helpful way to control E. coli during cream maturation, in association to adequate good manufacturing practices. Conclusions. Levels of E. coli in the considered raw milk butter batches were really high. A new decision tree is proposed that could help manufacturers and food controllers to improve hygienic quality of raw milk butter.
Disciplines :
Food science
Author, co-author :
Gérard, Amaury ; Université de Liège - ULiège > Université de Liège - ULiège
Barbosa, Naomi ; Université de Liège - ULiège > Département GxABT > Chemistry for Sustainable Food and Environmental Systems (CSFES)
Di Tanna, Sybille ; Université de Liège - ULiège > TERRA Research Centre > Chemistry for Sustainable Food and Environmental Systems (CSFES)
Sindic, Marianne ; Université de Liège - ULiège > TERRA Research Centre > Chemistry for Sustainable Food and Environmental Systems (CSFES)
Language :
French
Title :
Quelles sont les principales sources de contamination du beurre au lait cru par Escherichia coli ?
Publication date :
08 March 2022
Journal title :
Biotechnologie, Agronomie, Société et Environnement
Bakirci I. et al., 2002. The effects of commercial starter culture and storage temperature on the oxidative stability and diacetyl production in butter. Int. J. Dairy Technol., 55, 177-181.
Bird P. et al., 2020. Evaluation of the 3MTM Petrifilm™ Rapid E. coli/Coliform Count Plate for the enumeration of E. coli and coliforms: collaborative study, first action: 2018.13. J. AOAC Int., 103, 513-522, doi.org/10.1093/jaocint/qsz013
Ceylan O. & Ozcan T., 2020. Effect of the cream cooling temperature and acidification method on the crystallization and textural properties of butter. LWT Food Sci. Technol., 132, 109806, doi.org/10.1016/j. lwt.2020.109806
Costanzo N. et al., 2020. Foodborne pathogen assessment in raw milk cheeses. Int. J. Food Sci., 2020, 3616713, doi. org/10.1155/2020/3616713
Cullinane N. et al., 1984. Influence of season and processing parameters on the physical properties of Irish butter. Irish J. Food Sci. Technol., 8, 13-25.
Deosarjar S.S. et al., 2016. Butter manufacture. In: Caballero B. et al., eds. The Encyclopedia of food and health. Cambridge, MA, USA: Academic Press, 529-534.
El-Hajjaji S. et al., 2019. Overview of the local production process of raw milk butter in Wallonia (Belgium). Int. J. Dairy Technol., 72, 466-471, doi.org/10.1111/1471-0307.12608
El-Hajjaji S. et al., 2021. Study of the bacterial profile of raw milk butter, made during a challenge test with Listeria monocytogenes, depending on cream maturation temperature. Food Microbiol., 98, 103778, doi. org/10.1016/j.fm.2021.103778
European Commission, 2004. Commission Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific hygiene rules for on the hygiene of foodstuffs. Off. J. L., 139, 55.
European Commission, 2005. Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Off. J. L., 338, 1-26.
Federal Agency for the Safety of the Food Chain, 2012. Guide d’autocontrôle pour la production et la vente de produits laitiers à la ferme, https://www. favv-afsca.be/autocontrole-fr/guides/distribution/g034/_documents/G-034_V1_23-07-2012_Fr.pdf, (25/06/2021.
Food and Agriculture Organization of the United Nations, 2004. CAC:RCP 57-2004 Code of hygienic practice for milk and milk products, http://www.fao.org/fileadmin/user_upload/livestockgov/documents/CXP_057e.pdf, (01/07/2021).
Gaglio R. et al., 2016. Microbial activation of wooden vats used for traditional cheese production and evolution of neoformed biofilms. Appl. Env. Microbiol., 82, 585-595, doi.org/10.1128/AEM.02868-15
International Organization for Standardization, 2017. ISO 6887-1:2017. Microbiology of the food chain – Preparation of test samples, initial suspension and decimal dilutions for microbiological examination – Part 1: General rules for the preparation of the initial suspension and decimal dilutions. Geneva, Switzerland: ISO.
Metlef S. & Dilmi-Bouras A., 2009. Effet antagoniste de Lactococcus lactis, souches extrêmophiles locales, sur des espèces de la flore intestinale résidente. Rev. Nat. Technol., 1, 33-44.
N’Guessan E. et al., 2015. A survey of bacteria found in Belgian dairy farm products. Biotechnol. Agron. Soc. Env., 19, 346-354.
Ostrov I. et al., 2016. Development of a method to determine the effectiveness of cleaning agents in removal of biofilm derives spores in milking system. Front. Microbiol., 7, 1498, doi.org/10.3389/fmicb.2016.01498
Panchal B. et al., 2021. Influence of fat globule size, emulsifiers, and cream-aging on microstructure and physical properties of butter. Int. Dairy J., 117, 105003, doi.org/10.1016/j.idairyj.2021.105003
Sudhakaran A.V. & Minj J., 2020. Basic facts about dairy processing and technologies. In: Minj J. et al., eds. Dairy processing: advances research to applications. Berlin, Germany: Springer, 1-24.
Tenaillon O. et al., 2010. The population genetics of commensal Escherichia coli. Nat. Rev. Microbiol., 8, 207-217, doi.org/10.1038/nrmicro2298
Verraes C. et al., 2015. Review of the microbiological hazards of dairy products made from raw milk. Int. Dairy J., 50, 32-44, doi.org/10.1016/j.idairyj.2015.05.011
Vilar M.J. et al., 2012. Implementation of HACCP to control the influence of milking equipment and cooling tank on the milk quality. Trends Food Sci. Technol., 23, 4-12, doi.org/10.1016/j.tifs.2011.08.002