Article (Scientific journals)
A Prior Level Fusion Approach for the Semantic Segmentation of 3D Point Clouds Using Deep Learning
Ballouch, Zouhair; Hajji, Rafika; Poux, Florent et al.
2022In Remote Sensing, 14 (14), p. 3415
Peer Reviewed verified by ORBi
 

Files


Full Text
remotesensing-14-03415-v2 (6).pdf
Author postprint (4.64 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
3D point cloud; aerial images; semantic segmentation; data fusion; deep learning
Abstract :
[en] Three-dimensional digital models play a pivotal role in city planning, monitoring, and sustainable management of smart and Digital Twin Cities (DTCs). In this context, semantic segmentation of airborne 3D point clouds is crucial for modeling, simulating, and understanding large-scale urban environments. Previous research studies have demonstrated that the performance of 3D semantic segmentation can be improved by fusing 3D point clouds and other data sources. In this paper, a new prior-level fusion approach is proposed for semantic segmentation of large-scale urban areas using optical images and point clouds. The proposed approach uses image classification obtained by the Maximum Likelihood Classifier as the prior knowledge for 3D semantic segmentation. Afterwards, the raster values from classified images are assigned to Lidar point clouds at the data preparation step. Finally, an advanced Deep Learning model (RandLaNet) is adopted to perform the 3D semantic segmentation. The results show that the proposed approach provides good results in terms of both evaluation metrics and visual examination with a higher Intersection over Union (96%) on the created dataset, compared with (92%) for the non-fusion approach.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Ballouch, Zouhair  ;  Université de Liège - ULiège > Sphères
Hajji, Rafika  ;  Université de Liège - ULiège > Département de géographie > Unité de Géomatique - Topographie et géométrologie
Poux, Florent  ;  Université de Liège - ULiège > Département de géographie > Unité de Géomatique - Topographie et géométrologie
Kharroubi, Abderrazzaq  ;  Université de Liège - ULiège > Département de géographie > Unité de Géomatique - Topographie et géométrologie
Billen, Roland  ;  Université de Liège - ULiège > Département de géographie > Département de Géographie : Plateforme "GITAN" (Geographic Information Technological Aid Network"
Language :
English
Title :
A Prior Level Fusion Approach for the Semantic Segmentation of 3D Point Clouds Using Deep Learning
Publication date :
16 July 2022
Journal title :
Remote Sensing
eISSN :
2072-4292
Publisher :
MDPI AG
Volume :
14
Issue :
14
Pages :
3415
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 17 September 2022

Statistics


Number of views
115 (18 by ULiège)
Number of downloads
103 (6 by ULiège)

Scopus citations®
 
17
Scopus citations®
without self-citations
14
OpenCitations
 
2
OpenAlex citations
 
18

Bibliography


Similar publications



Contact ORBi