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Abstract: Three-dimensional digital models play a pivotal role in city planning, monitoring, and sus-
tainable management of smart and Digital Twin Cities (DTCs). In this context, semantic segmentation
of airborne 3D point clouds is crucial for modeling, simulating, and understanding large-scale urban
environments. Previous research studies have demonstrated that the performance of 3D semantic
segmentation can be improved by fusing 3D point clouds and other data sources. In this paper, a new
prior-level fusion approach is proposed for semantic segmentation of large-scale urban areas using
optical images and point clouds. The proposed approach uses image classification obtained by the
Maximum Likelihood Classifier as the prior knowledge for 3D semantic segmentation. Afterwards,
the raster values from classified images are assigned to Lidar point clouds at the data preparation
step. Finally, an advanced Deep Learning model (RandLaNet) is adopted to perform the 3D semantic
segmentation. The results show that the proposed approach provides good results in terms of both
evaluation metrics and visual examination with a higher Intersection over Union (96%) on the created
dataset, compared with (92%) for the non-fusion approach.

Keywords: 3D point cloud; aerial images; semantic segmentation; data fusion; deep learning

1. Introduction

Three-dimensional city modeling has significantly advanced in recent decades as we
move towards the concept of Digital Twin Cities (DTCs) [1], where 3D point clouds are
widely used as a major input [2–4]. The development of a three-dimensional city model
requires a detailed 3D survey of the urban fabric. Lidar technology is widely used for this
purpose. It allows capturing geometric and spectral information of objects in the form of
3D point clouds. This acquisition system provides a large amount of precise data with
a high level of detail, quickly and reliably. Nevertheless, the transition from 3D point
clouds to the urban model is tedious, essentially manual, and time-consuming [2]. Today,
the major challenge is to automate the process of 3D digital model reconstruction from
3D Lidar point clouds [3] while reducing the costs associated with it. Deep Learning
(DL) methods are increasingly used to improve the semantic segmentation of 3D point
clouds [4]. Semantically segmented point clouds are the foundation for creating 3D city
models. The resulting semantic models are used to create DTCs that support a plethora of
urban applications [5].

In the literature, different approaches to reconstructing 3D urban models from Lidar
data have been proposed. Among the developed methods, Martinovic et al. [6] proposed
a methodology for 3D city modeling using 3D facade splitting, 3D weak architectural
principles, and 3D semantic classification. It is a technique that produces state-of-the-art
results in terms of computation time and precision. Furthermore, Zhang et al. [7] used a
pipeline with residual recurrent, Deep-Q, and Convolutional Neural Networks (CNN) to
classify and reconstruct urban models from 3D Lidar data. Additionally, Murtiyoso et al. [8]
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and Gobeawan et al. [9] presented two workflows for the generation of CityGML models for
roof extraction and tree objects from point clouds, respectively. Moreover, several research
teams have focused on merging the point clouds with other data sources to take advantage
of the benefits of each. For instance, Loutfia et al. [10] developed a simple semi-automatic
methodology to generate a 3D digital model for the urban environment based on the
fusion of ortho-rectified imagery and Lidar data. In the proposed workflow, data semantic
segmentation was carried out with an overall precision of almost 83.51%. The obtained
results showed that the proposed methodology could successfully detect several types of
buildings, and the Level of Detail (LoD2) was created by integrating the roof structures in
the model [10]. Similarly, Kwak et al. [11] introduced an innovative framework for fully
automated building model generation by exploiting the advantages of images and Lidar
datasets. The main drawback of the proposed methodology was that it could only model
the types of buildings that decompose into rectangles. Comparably, Chen et al. [12] obtained
the buildings’ present status and their reconstruction models by integrating Terrestrial
Laser Scanning (TLS) and UAV (Unmanned Aerial Vehicle) photogrammetry.

Two main stages are essential to building a three-dimensional city model from 3D
point clouds: semantic segmentation and 3D modeling of the resulting semantic classes.
The first consists of assigning semantic information for each point based on homogeneous
criteria [13]. In the literature, many developments were conducted in the field of 3D
semantic segmentation of point clouds, which can be classified into three families. The
first one is based on the raw point clouds; the second is based on a derived product
from the point clouds; the third combines 3D point clouds and additional information
(optical images, classified images, etc.). The richness and the accuracy of a 3D urban
model created from point clouds depend on the acquisition, semantic segmentation, and
modeling processes.

DL in geospatial sciences has been an active research field since the first CNN (Convo-
lutional Neural Network) was developed for road network extraction [14]. Thanks to their
capacity for processing large multi-source data with good performance, DL techniques rev-
olutionize the domain of computer vision and are state-of-the-art in several tasks, including
semantic segmentation [15,16]. Now, there is a lot of interest in developing DL algorithms
for processing three-dimensional spatial data.

For the 3D semantic segmentation task, several papers have stated that the fusion of 3D
point clouds with other sources (drone images, satellite images, etc.) is promising [17–20]
thanks to the planimetric continuity of the images and the altimetric precision of point
clouds. Currently, the scientific research in this niche of multi-source data fusion for
semantic segmentation is oriented more towards the use of large amounts of additional
information (point clouds, multispectral, hyperspectral, etc.). It requires significant financial
and material resources, as well as a lot of computational memory and consequently a high
computation time. Furthermore, these data-intensive approaches need to collect different
types of data in a minimal time interval to avoid any change in the urban environment [21].
In addition, some information would not add much to the differentiation of urban objects.
This motivates us to develop a new methodology of fusion that requires less additional
information while ensuring high performance.

In this paper, a semantic segmentation approach was developed. It is based on multi-
source data (raw point clouds and aerial images) and adopted an advanced deep neural
network model. The proposed process can serve as an operational methodology to extract
the urban fabric from point clouds and images with better accuracy. It uses a standard
method for image classification, in which the training areas were chosen according to
the classes present in the Lidar dataset. This technique solves the problem posed by the
incoherence of the semantic classes present in the Lidar and image datasets.

To briefly summarize, this paper makes the following four major contributions:

• A less data-intensive fusion approach for 3D semantic segmentation using optical
imagery and 3D point clouds;
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• An adaptation of an advanced DL method (RandLaNet) to improve the performance
of three-dimensional semantic segmentation;

• A solution to solve the problem of the incoherence of the semantic classes present in
the Lidar and image datasets at the fusion step;

• A new airborne 3D Lidar dataset for semantic segmentation.

The present paper is structured as follows: In Section 2, the main developments in
fusion-based approaches for semantic segmentation of Lidar point clouds are presented.
Section 3 provides a comprehensive description of the proposed fusion approach. The
experiments and results analysis are the subjects of Section 4. Finally, the paper ends with
a conclusion.

2. Related Work

With the increasing demand for three-dimensional land use and urban classification,
3D semantic segmentation of multi-sensor data has become a current research topic. Data
fusion methodologies have achieved good results in semantic segmentation [22], and
several studies have demonstrated that fusing 3D point clouds and image data can improve
segmentation results [23–25].

Various datasets available online, such as S3DIS [26], Semantic3D [27], SensatUr-
ban [28], etc., have further boosted the scientific research of DL on 3D Lidar data, with an
increasing number of techniques being proposed to address several problems related to 3D
point cloud processing, mainly 3D semantic segmentation [4]. There has been an increasing
number of research studies about adapting DL techniques or introducing new ones to
semantically segment 3D point clouds. The developed methodologies can be classified
into four methods: (1) projection of the point cloud into a 3D occupancy grid such as
in [29]; (2) projection of the point cloud on images, and then the semantic segmentation
of each image using DL techniques of image semantic segmentation [30]; (3) the use of
CRFs to work more on graphs of the cloud as in the case of the SegCloud technique [31]
or more by conducting convolutions on graphs as in the case of the SPGraph method [32];
(4) the use of networks that directly consume the point clouds and that can respect the
ensemblist properties of a point cloud such as RandLaNet [33]. However, CNNs do not
yet obtain similar performance on 3D point clouds as those achieved for image or voice
analysis [32]. This opens the way to intensify the scientific research in this direction to
enhance their performance.

Recently, research studies concluded that Lidar and multispectral images have dis-
tinct characteristics that render them better in several applications [23,34]. The fusion of
multispectral images and 3D point clouds would achieve good performance in several
applications compared to using a single type of data source. Indeed, the imagery, although
relevant for the delineation of accurate object contours, is less suitable for the acquisition of
detailed surface models. Lidar data, while considered a major input for the production of
very detailed surface models, is less suitable for the delimitation of object limits [23] and
can simply distinguish urban objects based on height values. Furthermore, due to the lack
of spectral information, Lidar data can present semantic segmentation confusion between
some urban objects (e.g., artificial objects and natural objects); consequently, the fusion
of multispectral images and 3D point clouds can compensate for each other [23] towards
more accurate and reliable semantic segmentation results [22].

Four fusion levels exist to merge Lidar and image data [35]. The first one is prior-level
fusion. It assigns 2D land cover (prior knowledge) from a multispectral image to the 3D
Lidar point clouds and then uses a DL technique to obtain 3D semantic segmentation results.
The second is point-level fusion which assigns spectral information from image data to the
points and then trains the classifier using a deep neural network to classify the 3D point
clouds with multispectral information. The third is feature-level fusion which concatenates
the features extracted from 3D points clouds and image data by a deep neural network and
deep convolutional neural network, respectively. After concatenation, the features can be
fed to an MLP (MultiLayer Perceptron) to derive the 3D semantic segmentation results. The
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fourth is decision-level fusion, which consists of semantically segmenting the 3D Lidar data
and multispectral image to obtain 3D and 2D semantic segmentation results, respectively.
Subsequently, the two types of data are combined using a fusion technique as a heuristic
fusion rule [36]. In this research, a new prior-level approach is proposed, in which the
classified images and the raw point clouds are linked and then classified by an advanced
deep neural network structure. The major objective is to improve the performance of 3D
semantic segmentation.

The previous methods can be classified into two categories: (1) images based ap-
proaches and (2) point clouds-based approaches.

2.1. Image-Based Approaches

In these approaches, 3D point clouds represent auxiliary data for 2D urban semantic
segmentation, while the multispectral image is the primary data. Point clouds are usually
rasterized to Digital Surface Models (DSM) and other structural features, notably deviation
angle and height difference.

Past research studies demonstrated the potential of the use of multi-source aerial data
for semantic segmentation, where the 3D point cloud is transformed into a regular form
that is easy to manipulate and segment [37]. The first study that showed the difficulty of
differentiating regions with similar spectral features using only multispectral data was
proposed by [38], where the authors used DSMs as a complementary feature to further
improve the semantic segmentation results. They investigated four fusion processes based
on the proposed DSMF (DSM Fusion) module to highlight the most suitable method and
then designed four DSMFNets (DSM Fusion Networks) according to the corresponding
process. The proposed methodologies were evaluated using the Vaihingen dataset, and
all DSMFNets attained favorable results, especially DSMFNet-1, which reached an overall
accuracy of 91.5% on the test dataset. In the same direction, Pan et al. [39] presented a novel
CNN-based methodology named FSN (Fine Segmentation Network) for semantic segmen-
tation of Lidar data and high-resolution images. It follows the encoder–decoder paradigm,
and multi-sensor fusion is realized at the feature level using MLP (Multi-Layer Perceptron).
The evaluation of this process using ISPRS (International Society for Photogrammetry
and Remote Sensing) Vaihingen and Potsdam benchmarks shows that this methodology
can bring considerable improvements to other related networks. Furthermore, Zhang
et al. [40] proposed a fusion method for semantic segmentation of DSMs with infrared or
color imagery. They deducted an optimized scheme for the fusion of layers with elevation
and image into a single FCN (Fully Convolutional Networks) model. The methodology
was evaluated using the ISPRS Potsdam dataset and the Vaihingen 2D Semantic Labeling
dataset and demonstrated significant potential. Comparably, Lodha et al. [41] transformed
Lidar data into a regular bidimensional grid, which they georegistered to grey-scale air-
borne imagery of the same grid size. After fusing the intensity and height data, they
generated a 5D feature space of image intensity, height, normal variation, height variation,
and Lidar intensity. The work achieved a precision of around 92% using the “AdaBoost.M2”
extension for multi-class categorization. Furthermore, Weinmann et al. [42] proposed the
fusion of multispectral, hyperspectral, color, and 3D point clouds collected by aerial sensor
platforms for semantic segmentation in urban areas. The MUUFL Gulfport Hyperspectral
and Lidar aerial datasets were used to assess the potential of the combination of different
feature sets. The results showed good quality, even for a complex scene collected with a low
spatial resolution. Similarly, Onojeghuo et al. [43] proposed a framework for combining
Lidar data with hyperspectral and multispectral imagery for object-based habitat mapping.
The integration of spectral information with all Lidar-derived measures produced a good
overall semantic segmentation.

To sum up, previous studies state that although the networks have the strength to
utilize the convolution operation for both elevation information and multispectral image,
data may be distorted principally in case of sparse data interpolation. This distortion can
affect the results of semantic segmentation depending upon transformation techniques
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or the efficacy of the interpolation. In addition, the transformation of 3D point clouds
into DSM or 2.5D data can provide obscure data, but, in terms of the prospects of fusion
techniques by DL methods, these methods are relatively simpler and easier, as they consider
the geometric information as a two-dimensional image representation [17].

2.2. Point Clouds Based Approaches

In these methods, 3D point clouds play a key role in 3D semantic segmentation; the
multispectral image represents the auxiliary data, and its spectral information is often
simply interpolated as an attribute of 3D point clouds [44].

Among the methodologies developed in this sense, Poliyapram et al. [17] proposed
a neural network for aerial image and 3D points clouds point-wise fusion (PMNet) that
respects the permutation invariance characteristics of 3D Lidar data. The major objective of
this work is to improve the semantic segmentation of 3D point clouds by fusing additional
aerial images acquired from the same geographical area. The comparative study conducted
using two datasets collected from the complex urban area of the University of Osaka and
Houston, Japan, shows that the proposed network fusion “PointNet (XYZIRGB)” surpasses
the non-fusion network “PointNet (XYZI)” [17]. Another fusion method named LIF-Seg
was proposed in [18]. It is simple and makes full use of the contextual information of
image data. The obtained results show performance superior to state of the art methods
by a large margin [18]. On the other hand, some research works are based on extracting
features from the image data using a neural network and merging them with the Lidar
data as in [19], which demonstrated that additional spectral information improves the
semantic segmentation results of 3D points. Furthermore, Megahed et al. [34] developed
a methodology by which Lidar data were first georegistered to airborne imagery of the
same location so that each point inherits its corresponding spectral information. The geo-
registration added red, green, blue, and near-infrared bands to the Lidar’s intensity and
height feature space as well as the calculated normalized difference vegetation index. The
addition of spectral characteristics to the Lidar’s height values boomed the semantic seg-
mentation results to surpass 97%. Semantic segmentation errors occurred among different
semantic classes due to independent acquisition of airborne imagery and Lidar data as
well as orthorectification and shadow problems from airborne imagery. Furthermore, Chen
et al. [36] proposed a fusion method of semantic segmentation that combines multispectral
information, including the near-infrared, red, etc., and point clouds. The proposed method
achieved global accuracy of 82.47% on the ISPRS dataset. Finally, the authors of [20] pro-
ceed by mapping the preliminary segmentation results obtained by images to point clouds
according to their coordinate relationships in order to use the point clouds to extract the
plane of buildings directly.

To summarize, the aforementioned approaches, in which 3D point clouds are the
primary data, show notable performance, especially in terms of accuracy. Among their
benefits, they preserve the original characteristics of point clouds, including precision and
topological relationships [37].

2.3. Summary

Scientific research is more oriented to the use of several spatial data attributes (X, Y, Z,
red, green, blue, near-infrared, etc.) [34,36,42,43] by developing fusion-based approaches
for semantic segmentation. These last ones have shown good performance in terms of
precision, efficiency, and robustness. However, they are more data-intensive and require
performant computing platforms [21]. This is due to the massive characteristics of the fused
data, which can easily exceed the memory limit of desktop computers. To overcome these
problems, it seems useful to envisage less costly fusion approaches based on less additional
information while maintaining precision and performance. To achieve this objective, a
prior-level fusion approach combining images and point clouds is proposed, which is
able to improve the performance of semantic segmentation, including contextual image
information and geometrical information.
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3. Materials and Methods
3.1. Study Areas and Ground Data

To test the developed semantic segmentation process, the aerial images and Lidar point
clouds data acquired by EUROSENSE Company are used. These are relative to four urban
zones of the region of Flanders (Belgium), where the images were acquired with a resolution
of 10 cm. The density of points in these four sites is greater than 128 points/m2. The different
data are acquired at the same time (December 2020) and in the same location (Figure 1). The
Lidar data are used to develop a new dataset by manual labeling of point clouds. The created
dataset contains labeled point clouds of urban scenes. All points in the clouds have RGB
values, XYZ coordinates, and intensity values. The dataset consists of eight training scans
with their labels and two test scans. The dataset contains five different classes, which are
buildings, water, vegetation, cars, and impervious surfaces (Figures 2 and 3), and will be
publicly available online.
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3.2. Methodology

In the 3D semantic segmentation process, feature extraction from Lidar point clouds
and image data plays a crucial role. It can significantly affect the final semantic segmentation
results. The proposed approach, named Plf4SSeg (prior-level fusion approach for semantic
segmentation), is based on combining geometric and intensity information from 3D point
clouds and RGB information from aerial images for 3D urban semantic segmentation.

The methodology (Figure 4) includes two main steps: (1) image classification and
(2) fusion of classified images and 3D point clouds.
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3.2.1. Image Classification (Called Prior-Knowledge from RGB-Images)

It is noteworthy to mention that the choice of inputs (X, Y, Z, red, green, blue, etc.)
to integrate into the process of semantic segmentation has a significant impact on the
quality of the results. In this regard, the image classification generated by a supervised
classification algorithm was added as an attribute of the 3D point cloud.

For image classification from the study area, a supervised classification method was
applied with the Maximum Likelihood Classifier (MLC). The latter was trained and classi-
fied using the ArcGIS 10.5 tool with default parameter settings. Figure 5 summarize the
general process followed for image classification.
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Figure 5. Methodological workflow for image classification.

The MLC is the most common statistical method used for image supervised clas-
sification. It is a parametric statistical technique where the analyst first supervises the
classification by identifying land cover types, called training areas, as a source of reference
data. The image classification process is a standard pixel-based method using a multivariate
probability density function of semantic classes [45]. The selection of training samples must
be conducted with separability as it has a significant impact on the classification results.

The image classification algorithm should take into consideration the risks of confusion
between land use classes. Furthermore, it should be as automatic as possible to make the
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image processing easily reproducible and dynamic over time. In this study, MLC was
chosen as a parametric classifier that takes into account the variance–covariance within
the class distributions as well as its adaptation for normally distributed data owing to its
higher precision, as demonstrated by many recent papers [46–48].

The choice of using a non-DL method for image classification instead of a DL method
is justified by the difference between the semantic classes (cars, trees, power lines, etc.)
present in Lidar and image datasets. The creation of coherence between these classes
by aligning them can reduce the semantic details of one of the datasets (for example, by
matching the three classes “low vegetation”, “shrub”, and “tree” from the Lidar dataset to
“vegetation” class from the image dataset). Furthermore, the use of the MLC as a supervised
method offers the possibility to select the training zones (semantic classes) according to the
type of classes present in the Lidar data; this allows obtaining the same semantic classes at
the fusion level of classified images and labeled point clouds. Thus, unlike the standard
method, DL methods require large amounts of training data.

The four images acquired at the beginning (Figure 1) were split into 10 images to
simplify the manipulation of data (in the same way in the case of point clouds). The
identification of the sampled site locations for each semantic class was performed by visual
interpretation of RGB images. The training samples were populated for each class by
creating new geometries using the several drawing tools provided by the ArcGIS tool.
A total of five classes were defined: buildings, water, vegetation, cars, and impervious
surfaces. The MLC is used depending on the created training sites.

At the end of all these operations of treatment and exploitation of data, the thematic
images which highlight the different urban objects in the study area were obtained. The
examples of RGB images and their corresponding classification results are illustrated below
(Figure 6).
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To summarize, image classification allows the distinction of spectrally homogeneous
objects. The combination of this information already classified with point clouds (X, Y, Z,
and intensity) can compensate for the limits of point clouds.

3.2.2. Fusion of Classified Images and 3D Point Clouds

A. Assignment of prior knowledge to 3D point clouds

The data acquired by the airborne Lidar contain geometric and radiometric information
of objects in the form of point clouds, which vary in resolution and density, depending on
the system’s technical specifications. Before any exploitation of the raw data, it must be
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preprocessed through several steps, including georeferencing, cleaning, etc. Subsequently,
due to the manipulation of a set of images collected in different zones, the preliminary
image classification results are obtained using the MLC described above.

Afterwards, the generation of training data is realized by assigning raster values from
each classified image (.Tif) to the corresponding point cloud (.Las) in the Cloud Compare
tool. It means that each classified image is added to the corresponding raw point cloud
(XYZ, intensity) from the created dataset, based on its (X, Y) coordinates. That is to say,
for each (x, y) position of the 3D point cloud, we search for its nearest pixel in the aerial
image for data fusion. To do this, the images are first transformed into mesh format by
Cloud Compare, and then the raster values from classified images are assigned to the
corresponding clouds. The process is applied to all point clouds present in the dataset.
The principle of data preparation according to the formalities of the developed process is
illustrated below:

Point cloud 1 (X1 + Y1 + Z1 + Intensity1 + Image classification 1) (1)

Point cloud 2 (X2 + Y2 + Z2 + Intensity2 + Image classification 2) (2)

Point cloud n (Xn + Yn + Zn + Intensityn + Image classification n) (3)

The linked classified images and point clouds are the inputs of the DL model adopted
for 3D semantic segmentation. Finally, a high percentage of the data prepared is used for
the model training step.

B. Three-Dimensional semantic segmentation

The 3D semantic segmentation algorithm used for this research is the RandLaNet
algorithm [33], which is an advanced DL model for semantic segmentation. It treats
directly and randomly 3D point clouds based on point sampling without requiring any
pre/postprocessing operation. The performance of this DL technique has been evaluated
on several public datasets, including Semantic 3D, S3DIS, and Semantic KITTI datasets. It
has demonstrated very satisfactory qualitative and quantitative results [33].

Owing to its higher performance, the RandLaNet algorithm has proven itself to be one
of the more effective semantic segmentation algorithms in several 3D laser-scanning system
applications, including urban mapping, in which it achieves good results, as demonstrated
by many recent papers [28,49,50].

The model was trained two times: the first to run the proposed approach; the second
to run a process based only on point clouds. During these implementations, the same basic
model hyper-parameters were kept after modifying the input tensor.

The choice of a prior-level approach (that is, the addition of the already classified
images to the point clouds) is justified by its direct use of semantic information from image
classification rather than the original spectral information of the aerial images. Therefore, it
offers the fastest convergence. The difference between the predictions made by the Deep
Neural Network and the ground truth of the observations used during the training process
is minimal. That is, after embedding the semantic information from the image data, the
loss reaches a stable state faster and becomes smaller. Thus, the Plf4SSeg approach can fill
the gap between 2D and 3D dimensional land cover through a series form. Additionally,
two-dimensional image semantic segmentation provides prior knowledge for 3D semantic
segmentation, which could guide model-learning as it facilitates the distinction of the
different semantic classes, with less confusion between them.

3.2.3. Non-Fusion Approach

To evaluate the proposed less data-intensive approach, it was compared with the
approach based only on point clouds where all accomplished approaches used the Rand-
LaNet algorithm and the same dataset (the created dataset) to ensure the fairness of the
comparison as much as possible.
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Unlike the Plf4SSeg approach, the process based only on point clouds, named the
non-fusion approach, directly classifies the 3D point clouds (Figure 7) precisely in terms of
(XYZ) coordinates and intensity information.
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To properly evaluate both approaches, the same process was followed for data prepa-
ration. In addition to the same hyperparameters (batch size, learning rate, epochs, etc.), the
same techniques (metrics and visual quality) were employed for the evaluation of model
predictions. After training and model validation in both cases, a set of test data from the
created dataset was used to evaluate the quality of predictions by comparing the field
reality and the model output in both approaches.

4. Experiments and Results Analysis
4.1. Implementation

The RandLA-Net model described above was used for the implementation of the
Plf4SSeg approach. This choice is justified by the fact that this model uses random point
sampling instead of more complex point selection methods. Therefore, it is computationally
and memory efficient. Moreover, it introduces a local feature aggregation module in order
to progressively increase the receptive field for each tridimensional point, thus, preserving
the geometric details.

Additionally, “Ubuntu with python” was used to perform both approaches: it is a
GNU/Linux distribution and a grouping of free software that can be adapted by the user.
For Python libraries, the choice is not obvious. Indeed, many DL frameworks are available;
each has its limitations and its advantages. The Scikit-Learn library was chosen due to its
efficiency: this is a free Python library for machine learning, which provides a selection of
efficient tools for machine learning and statistical modeling, including semantic segmenta-
tion, regression, and clustering via a consistent interface in Python. The TensorFlow deep
learning API was used for the implementation of DL architecture. It was developed to
simplify the programming and the use of deep networks.

All computations were processed by Python programming language v 3.6, on Ubuntu
v 20.04.3. Cloud Compare v 2.11.3 was used to visualize the 3D Lidar point clouds. The
code framework of the RandLaNet model adopted was Tensorflow-gpu v 1.14.0. The code
was tested with CUDA 11.4. All experiments were conducted on an NVIDIA GeForce RTX
3090. Data analysis was carried out on a workstation with the following specifications:
Windows 10 Pro for workstations OS 64-bit, 3.70 GHz processor, and memory of 256G RAM.

The RandLaNet model used for the implementation of the Plf4SSeg approach was
implemented by stacking random sampling layers and multiple local feature aggregation.
A source code of its original version was used to train and test this DL model. It was
published in open access on GitHub (https://github.com/QingyongHu/RandLA-Net
(accessed on 15 June 2022)); this code was tested using the prepared data (Each cloud
contains: XYZ coordinates, intensity information, and corresponding classified image as
an attribute of the cloud). Furthermore, the basic hyper-parameters were kept as they are
crucial for the performance, speed, and quality of the algorithm. The Adam optimization
algorithm was adopted with an initial learning rate equal to 0.01, an initial noise parameter
equal to 3.5, and batch size during training equal to 4. During the test phase, two sets
of point clouds (from the created dataset) were prepared according to the formalities of
the Plf4SSeg approach (i.e., each point cloud must contain the attributes X, Y, Z, intensity,
and image classification). Subsequently, these data were introduced into the pre-trained

https://github.com/QingyongHu/RandLA-Net
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network to deduce the semantic labels for each group of homogeneous points without any
pre/postprocessing such as block partitioning.

4.2. Results

The performance of the Plf4SSeg approach was evaluated using the created dataset.
Several evaluation criteria were adopted. In addition to the metrics (accuracy, recall, F1
score, and overall accuracy), the visual quality of the results was also considered. This
section demonstrates the obtained results and provides a comparative analysis with the
non-fusion approach, which uses the raw point clouds only.

4.2.1. Metrics

The accuracy of the semantic segmentation results is influenced by several factors,
such as the urban context, the DL technique, and the quality of the training and evaluation
data. Precision, recall, accuracy, intersection over union, and F1 score are often used to
evaluate the effect of a point cloud semantic segmentation [51]. The following are the
evaluation metrics that were used to assess the semantic segmentation results:

• Accuracy score is defined as the ratio of true negatives and true positives to all negative
and positive observations.

Accuracy =
TN + TP

TP + FN + TN + FP
.

TP, TN, FP, and FN are true positive, true negative, false positive, and false
negative, respectively.

• Recall of a class is the fraction of true positives (TP) among true positives and false
negatives (FN).

Recall =
TP

TP + FN
.

• Precision is calculated as the fraction of true positives (TP) among true and false
positives (FP).

Precision =
TP

TP + FP
.

• The intersection over union (IoU) metric is used to quantify the percentage of overlap
between ground truth and model output.

IoU =
TP

FP + TP + FN
.

TP, FP, and FN are true positive, false positive, and false negative, respectively.

• The F1 score of a class is the harmonic mean of the precision rate (P) and recall (R). It
combines these two indicators as follows.

F1 − score =
2 (R ∗ P)

R + P
.

• A confusion matrix is a good indicator of the performance of a semantic segmentation
model by measuring the quality of its results. Each row corresponds to a real class;
each column corresponds to an estimated class.

4.2.2. Quantitative and Qualitative Assessments

As already mentioned, the results of the evaluation of both metrics and visual exami-
nation of the proposed process are presented in Table 1. Subsequently, the results obtained
were compared with the non-fusion approach (Table 2). The objective was to study the
contribution of data fusion to semantic segmentation quality.
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A. Results of Plf4SSeg approach

Table 1. Quantitative results of Plf4SSeg approach.

The Dataset Class F1-Score Intersection over Union

Buildings 0.997 0.996
Vegetation 0.994 0.990

Impervious surfaces 0.945 0.901
Cars 0.952 0.913

Water 0.224 0.126

Table 2. Comparison of the Plf4SSeg approach and the non-fusion approach.

Non-Fusion Approach Plf4SSeg Approach

Accuracy 0.959 0.980
F1-score 0.956 0.977
Recall 0.959 0.980

Precision 0.960 0.981
IoU 0.924 0.962

The quality assessment of the semantic segmentation was evaluated through the
aforementioned metrics by comparing the output of the model and the reference test data
that were labeled. Table 1 below report the resulting metrics.

From Table 1, it appears that the quality of predictions of the different classes is
significantly better on the reference samples except for the water class. Additionally, the
metrics obtained for the building and vegetation classes are slightly higher than the cars
and impervious surfaces classes. The obtained results indicate that the model is reliable
for the prediction of unseen data. It should be noted that the low metrics obtained in the
water class are justified by its confusion with vegetation classes since they present almost
the same altitude. In addition, the Plf4SSeg approach tends to fail in the water class due to
the lack of water surfaces in the study area.

The confusion matrix presented below (Figure 8) shows that the model very accurately
classified buildings (100% correct), cars (96% correct), impervious surfaces (95% correct),
and vegetation (99%). The analysis of this matrix also shows that the confusion between
the different semantic classes is low, except for the water class, which is strongly confused
with vegetation.
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Finally, the semantic segmentation approach based on data fusion of raw point clouds
and classified images highlights the different urban objects present in the study area. To
better visually evaluate these semantic segmentation results, these last ones were superim-
posed on point clouds of the study area. The examples of point clouds (Figure 9A) and their
corresponding semantic segmentation results (Figure 9B) are illustrated below (Figure 9).
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At first sight, the obtained predictions are very close to the reference image. This
leads us to conclude that the Plf4SSeg approach is successful in associating semantic labels
for the different urban objects with better quality, where buildings, vegetation, cars, and
impervious surfaces were extracted accurately with clear boundaries.

B. Comparison with the non-fusion approach

In this research, the contribution of classified images in the 3D semantic segmentation
using as attributes the raw point clouds and the classification of the corresponding images
was studied. The obtained results were then compared with the non-fusion approach,
which uses XYZ coordinates and intensity only. Table 2 show the quantitative evaluation of
the test results for different approaches.

Table 2 uses metrics such as precision, F1 score, accuracy, recall, and intersection over
union to evaluate the performance in detail. RandLaNet (X, Y, Z, intensity information,
image classification) shows a significant improvement compared to RandLaNet (X, Y, Z,
I) in terms of both precision (0.98) and F1 score (0.97), and hence, it demonstrates that
the fusion method is more performant than the one using only (X, Y, Z, I) (Table 2). It
significantly outperforms the other process in terms of accuracy (0.98) and IoU (0.96).

The calculation of the different metrics allows us to quantitatively evaluate the quality
of the semantic segmentation results produced in the two study cases. The results show
a clear improvement in the case of the Plf4SSeg approach compared to the non-fusion
methodology with an intersection over union of 0.96 and an F1 score of 0.97. The overall
accuracy of the semantic segmentation improves (98%) as well as the other calculated
metrics. Consequently, the potential attributes proposed are important to include in the
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segmentation process, given their interest in the differentiation of the urban objects present
in the captured scene.

To summarize, an adequate parameterization of the DL model with an appropriate
choice of the different attributes to be included is relevant for a very good performance of
semantic segmentation.

4.3. Discussion

Three-dimensional Lidar semantic segmentation is a fundamental task for producing
3D city models and DTCs for city management and planning. However, semantic segmen-
tation is still a challenging process which requires high investment in terms of material and
financial resources. In this paper, a new less-data-intensive fusion DL approach based on
merging point clouds and aerial images was proposed to meet this challenge.

The particularity of the Plf4SSeg fusion approach compared to most existing fusion
methods is that it requires less additional information by combining Lidar point clouds
and classified images. The latter was obtained by a classification of RGB images using
the MLC. The majority of users avoid using fusion approaches due to their high cost in
terms of additional information, as well as required hardware resources for processing
and computing. The Plf4SSeg method offers the possibility of using classified images from
different data sources, namely satellite images, UAV images, etc., which increases its feasi-
bility and usability. In addition, the developed methodology is adapted to different Lidar
datasets. Indeed, the use of a standard method for image classification offers the possibility
to choose the semantic categories according to those present in the 3D Lidar datasets. This
technique conserves the semantic richness of the Lidar datasets instead of opting for an
adaptation of the semantic classes present in the Lidar and image datasets. Furthermore,
compared to the methods from the literature that transform the point cloud into a regular
shape, the Plf4SSeg approach treats the 3D Lidar data without any interpolation operation
and preserves its original quality.

The Plf4SSeg approach takes into consideration geometric and radiometric informa-
tion. Additionally, the merging of different data sources was conducted during the data
preparation step. This way of combination improves the learning of the DL method, which
can positively influence the model prediction results. Finally, the developed semantic
segmentation process applies to airborne data acquired in large-scale urban environments,
so it is very useful to highlight the different urban objects present in the city scale (buildings,
vegetation, etc.). On the other hand, for the training, validation, and testing of the DL
technique, an airborne Lidar dataset was created, and that will be published online later.
The created dataset presents the main semantic classes that are very useful for different
urban applications, which are buildings, vegetation, impervious surfaces, cars, and water.
The results are satisfactory for all semantic classes except for the water class, representing
a very small percentage in the dataset. The comparative study shows that the Plf4SSeg
approach improves all metrics over the non-fusion approach using the test data.

Three-dimensional semantic segmentation results were studied in detail by computing
a percentage-based confusion matrix with a ground truth label. In Figure 10 below, A (the
Plf4SSeg approach) and B (non-fusion approach) show the percentage-based confusion
matrix for a point cloud from the test data, respectively. This percentage-based analy-
sis provides an idea about the percentage of consistent and non-consistent points. The
Plf4SSeg approach shows a higher percentage of consistency than the non-fusion approach.
Additionally, in the case of the non-fusion approach, confusion in some semantic classes
was observed, for example, cars and impervious surfaces with vegetation. However, in the
case of the proposed approach, low confusion between these classes was obtained. The
height consistency obtained can be justified by the addition of already classified spectral
information, which facilitated the distinction of the different classes.

The evaluation of the Plf4SSeg approach that requires less additional information
compared to data-intensive approaches combining large amounts of additional information
(point clouds, multispectral, hyperspectral, etc.) shows that the developed methodology
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can achieve compared or superior results against these expensive methodologies. Some
examples of common semantic classes are taken; for example, in the case of the class
buildings, higher accuracy was obtained compared to those obtained by [43] at the level
of the built-up area class, with all tested techniques using the merged Eagle MNF Lidar
datasets. Similarly, in the case of the class of cars, higher accuracy was achieved compared
to the one obtained by [36] (71.4), which used the ISPRS dataset. Another example is the
revealed confusion between the two semantic classes, buildings and vegetation, in [34],
contrary to this work, in which the two semantic classes are well classified (Table 1).
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Finally, it should be noted that this research work presents certain limitations, in-
cluding the choice of the training zones that is conducted manually in the case of image
classification. Additionally, the Plf4SSeg approach should be tested in other urban contexts
that contain numerous objects. As a perspective, we suggest investigating the proposed
semantic segmentation process in several urban contexts by choosing numerous semantic
classes and by also considering the case of other terrestrial and airborne datasets. The
objective is to evaluate the performance and the limitations of the proposed approach when
confronted with other contexts.

5. Conclusions

In this study, a prior-level and less data-intensive approach for 3D semantic segmenta-
tion based on images and airborne point clouds was proposed and compared with a process
based only on point clouds. The proposed approach assigns the raster values from each
classified image to the corresponding point cloud. Moreover, it adopted an advanced deep
neural network (RandLaNet) to improve the performance of 3D semantic segmentation.
Another main contribution of the proposed methodology is that the semantic segmentation
of aerial images is based on training zones selected accordingly to the semantic classes of
the Lidar dataset, which allows solving the problem of the incoherence of the semantic
classes present in the Lidar and image datasets. Consequently, the proposed approach was
adapted for all Lidar dataset types. Another advantage of the proposed process was its
flexibility in the choice of image type to use; that is, all types of images, including satellites,
drones, etc., can be used. The Plf4SSeg approach, although it is based on less additional
information, demonstrated good performance compared to both the non-fusion process
based only on point clouds and the state-of-the-art methods. The experimental results
using the created dataset show that the proposed data-intensive approach delivers a good
performance, which is manifested mainly in intersection over union (96%) and F1 score
(97%) metrics that are high in the 3D semantic segmentation results. Therefore, an adequate
parameterization of the DL model with an appropriate choice of the different attributes
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to be included allowed us to achieve a very good performance. However, the proposed
process was a bit long, and the image classification part required a little human intervention
when manual identification of training zones. Low precision was obtained in the water
class due to the lack of water surfaces in the study area. We suggest investigating the
proposed approach in other urban contexts to evaluate its performance and limitations
when confronted with other contexts.
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