Article (Scientific journals)
Optimizing the soft independent modeling of class analogy (SIMCA) using statistical prediction regions
Avohou, Tonakpon Hermane; Sacre, Pierre-Yves; Hamla, Sabrina et al.
2022In Analytica Chimica Acta, 1229, p. 340339
Peer Reviewed verified by ORBi
 

Files


Full Text
HAVOHOU_ANALCHIMACTA_2022.pdf
Publisher postprint (3 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Spectroscopy; Environmental Chemistry; Biochemistry; Analytical Chemistry
Abstract :
[en] The ultimate goal of a one-class classifier like the “rigorous” soft independent modeling of class analogy (SIMCA) is to predict with a certain confidence probability, the conformity of future objects with a given reference class. However, the SIMCA model, as currently implemented often suffers from an undercoverage problem, meaning that its observed sensitivity often falls far below the desired theoretical confidence probability, hence undermining its intended use as a predictive tool. To overcome the issue, the most reported strategy in the literature, involves incrementing the nominal confidence probability until the desired sensitivity is obtained in cross-validation. This article proposes a statistical prediction interval-based strategy as an alternative strategy to properly overcome this undercoverage issue. The strategy uses the concept of predictive distributions sensu stricto to construct statistical prediction regions for the metrics. Firstly, a procedure based on goodness-of-fit criteria is used to select the best-fitting family of probability models for each metric or its monotonic transformation, among several plausible candidate families of right-skewed probability distributions for positive random variables, including the gamma and the lognormal families. Secondly, assuming the best-fitting distribution, a generalized linear model is fitted to each metric data using the Bayesian method. This method enables to conveniently estimate uncertainties about the parameters of the selected distribution. Propagating these uncertainties to the best-fitting probability model of the metric enables to derive its so-called posterior predictive distribution, which is then used to set its critical limit. Overall, the evaluation of the proposed approach on a diversity of real datasets shows that it yields unbiased and more accurate sensitivities than existing methods which are not based on predictive densities. It can even yield better specificities than the strategy that attempts to improve sensitivities of existing methods by “optimizing” the type 1 error, especially in low sample sizes’ contexts.
Research Center/Unit :
CIRM - Centre Interdisciplinaire de Recherche sur le Médicament - ULiège
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Avohou, Tonakpon Hermane  ;  Université de Liège - ULiège > Département de pharmacie > Chimie analytique
Sacre, Pierre-Yves  ;  Université de Liège - ULiège > Département de pharmacie > Chimie analytique
Hamla, Sabrina ;  Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Lebrun, Pierre  ;  Université de Liège - ULiège > Département de pharmacie > Chimie analytique
Hubert, Philippe  ;  Université de Liège - ULiège > Département de pharmacie > Chimie analytique
Ziemons, Eric  ;  Université de Liège - ULiège > Département de pharmacie > Chimie analytique
Language :
English
Title :
Optimizing the soft independent modeling of class analogy (SIMCA) using statistical prediction regions
Publication date :
05 September 2022
Journal title :
Analytica Chimica Acta
ISSN :
0003-2670
eISSN :
1873-4324
Publisher :
Elsevier BV
Volume :
1229
Pages :
340339
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Vibra4Fake
Available on ORBi :
since 06 September 2022

Statistics


Number of views
122 (14 by ULiège)
Number of downloads
12 (6 by ULiège)

Scopus citations®
 
2
Scopus citations®
without self-citations
2
OpenCitations
 
0
OpenAlex citations
 
3

Bibliography


Similar publications



Contact ORBi