3D City Models; CityJSON; CityGML; Smart Cities; Point Cloud
Abstract :
[en] The combination between dense point clouds and 3D vector objects permits new cartographic representation of urban information.
This paper proposes an extension for the CityJSON encoding to support point clouds. Following the 3.0 CityGML specifications,
attributes and features are added to the core module of v1.0.1 CityJSON. Two solutions are proposed: inline complex geometries and
external link to a remote file. The extended schema can be illustrated in four scenarios: detailed features visualization, fall-back
solution in features reconstruction processes, simulating urban climate represented as vector fields, and true-to-life representation
solution for complex elements such as solitary vegetation objects. It permits 3D city modelers to handle points clouds in a native way
reducing files size and avoiding redundancy. All developments and documentation are available open-source.
Research Center/Unit :
Geomatics Unit
Disciplines :
Computer science
Author, co-author :
Nys, Gilles-Antoine ; Université de Liège - ULiège > Département de géographie > Unité de Géomatique - Topographie et géométrologie
Kharroubi, Abderrazzaq ; Université de Liège - ULiège > Département de géographie > Unité de Géomatique - Topographie et géométrologie
Poux, Florent ; Université de Liège - ULiège > Département de géographie > Unité de Géomatique - Topographie et géométrologie
Billen, Roland ; Université de Liège - ULiège > Département de géographie > Unité de Géomatique - Topographie et géométrologie
Language :
English
Title :
An extension of CityJSON to support point clouds
Publication date :
30 June 2021
Event name :
XXIV ISPRS Congress
Event organizer :
International Society for Photogrammetry and Remote Sensing
Event place :
Nice, France
Event date :
from 05-07-2021 to 09-07-2021
Audience :
International
Journal title :
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Biljecki, F., Kumar, K., & Nagel, C. (2018). CityGML Application Domain Extension (ADE): Overview of developments. Open Geospatial Data, Software and Standards, 3(1), 13. https://doi.org/10.1186/s40965-018-0055-6
Brunnhuber, M., May, M., Traxler, C., Hesina, G., Glatzl, R., & Kontrus, H. (2017). Using Different Data Sources for New Findings in Visualization of Highly Detailed Urban Data. Proceedings of 22nd International Conference on Urban Planning, Regional Development and Information Society, 637-646.
Buyukdemircioglu, M., & Kocaman, S. (2018). A 3D CAMPUS APPLICATION BASED ON CITY MODELS AND WEBGL. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-5, 161-165. https://doi.org/10.5194/isprs-archives-XLII-5-161-2018
Chaturvedi, K., & Kolbe, T. H. (2015). Dynamizers-Modeling and Implementing Dynamic Properties for Semantic 3D City Models. https://doi.org/10.2312/udmv.20151348
Discher, S., Richter, R., & Döllner, J. (2019). Concepts and techniques for web-based visualization and processing of massive 3D point clouds with semantics. Graphical Models, 104, 101036. https://doi.org/10.1016/j.gmod.2019.101036
Gautier, J., Christophe, S., & Brédif, M. (2020). VISUALIZING 3D CLIMATE DATA IN URBAN 3D MODELS. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B4-2020, 781-789. https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-781-2020
Joshi, M. Y., Selmi, W., Binard, M., Nys, G.-A., & Teller, J. (2020). POTENTIAL FOR URBAN GREENING WITH GREEN ROOFS: A WAY TOWARDS SMART CITIES. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, VI-4/W2-2020, 87-94. https://doi.org/10.5194/isprs-annals-VI-4-W2-2020-87-2020
Kumar, K., Ledoux, H., & Stoter, J. (2018). Dynamic 3D Visualization of Floods: Case of the Netherlands. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W10, 83-87. https://doi.org/10.5194/isprs-archives-XLII-4-W10-83-2018
Kutzner, T., Chaturvedi, K., & Kolbe, T. H. (2020). CityGML 3.0: New Functions Open Up New Applications. PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science. https://doi.org/10.1007/s41064-020-00095-z
Ledoux, H., Ohori, K. A., Kumar, K., Dukai, B., Labetski, A., & Vitalis, S. (2019). CityJSON: A compact and easy-to-use encoding of the CityGML data model. ArXiv:1902.09155 [Cs]. http://arxiv.org/abs/1902.09155
Liu, D., Peng, J., Wang, Y., Huang, M., He, Q., Yan, Y., Ma, B., Yue, C., & Xie, Y. (2019). Implementation of interactive three-dimensional visualization of air pollutants using WebGL. Environmental Modelling & Software, 114, 188-194. https://doi.org/10.1016/j.envsoft.2019.01.019
Nebiker, S., Bleisch, S., & Christen, M. (2010). Rich point clouds in virtual globes - A new paradigm in city modeling-Computers, Environment and Urban Systems, 34(6), 508-517. https://doi.org/10.1016/j.compenvurbsys.2010.05.002
Nys, G.-A., Billen, R., & Poux, F. (2020). AUTOMATIC 3D BUILDINGS COMPACT RECONSTRUCTION FROM LIDAR POINT CLOUDS. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-2020, 473-478. https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-473-2020
Nys, G.-A., Poux, F., & Billen, R. (2020). CityJSON Building Generation from Airborne LiDAR 3D Point Clouds. ISPRS International Journal of Geo-Information, 9(9), 521. https://doi.org/10.3390/ijgi9090521
Poux, F., Neuville, R., Van Wersch, L., Nys, G.-A., & Billen, R. (2017). 3D Point Clouds in Archaeology: Advances in Acquisition, Processing and Knowledge Integration Applied to Quasi-Planar Objects. Geosciences, 7(4), 96. https://doi.org/10.3390/geosciences7040096
Spielhofer, R., Fabrikant, S. I., Vollmer, M., Rebsamen, J., Grêt-Regamey, A., & Wissen Hayek, U. (2017). 3D Point Clouds for Representing Landscape Change [Application/pdf]. https://doi.org/10.3929/ETHZ-B-000171222
Urech, P. R. W., Dissegna, M. A., Girot, C., & Grêt-Regamey, A. (2020). Point cloud modeling as a bridge between landscape design and planning. Landscape and Urban Planning, 203, 103903. https://doi.org/10.1016/j.landurbplan.2020.103903
Virtanen, J.-P., Jaalama, K., Puustinen, T., Julin, A., Hyyppä, J., & Hyyppä, H. (2021). Near Real-Time Semantic View Analysis of 3D City Models in Web Browser. ISPRS International Journal of Geo-Information, 10(3), 138. https://doi.org/10.3390/ijgi10030138
Vitalis, S., Labetski, A., Boersma, F., Dahle, F., Li, X., Arroyo Ohori, K., Ledoux, H., & Stoter, J. (2020). CITYJSON + WEB = NINJA. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, VI-4/W1-2020, 167-173. https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-167-2020
Vitalis, Stelios, Arroyo Ohori, K., & Stoter, J. (2020). CityJSON in QGIS: Development of an open-source plugin. Transactions in GIS, tgis.12657. https://doi.org/10.1111/tgis.12657
Vitalis, Stelios, Ohori, K., & Stoter, J. (2019). Incorporating Topological Representation in 3D City Models. ISPRS International Journal of Geo-Information, 8(8), 347. https://doi.org/10.3390/ijgi8080347
Wang, C., Wen, C., Dai, Y., Yu, S., & Liu, M. (2020). Urban 3D modeling with mobile laser scanning: A review. Virtual Reality & Intelligent Hardware, 2(3), 175-212. https://doi.org/10.1016/j.vrih.2020.05.003
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.