
AN EXTENSION OF CITYJSON TO SUPPORT POINT CLOUDS

G.-A. Nys 1,*, A. Kharroubi 1, F. Poux 1, R. Billen 1

1 Geomatics Unit, UR SPHERES, University of Liège (ULiège), Allée du six Août, 19, 4000 Liège, Belgium - (ganys, akharroubi,

fpoux, rbillen)@uliege.be

KEY WORDS: 3D City Models, CityJSON, CityGML, Smart Cities, Point Cloud

ABSTRACT:

The combination between dense point clouds and 3D vector objects permits new cartographic representation of urban information.
This paper proposes an extension for the CityJSON encoding to support point clouds. Following the 3.0 CityGML specifications,
attributes and features are added to the core module of v1.0.1 CityJSON. Two solutions are proposed: inline complex geometries and
external link to a remote file. The extended schema can be illustrated in four scenarios: detailed features visualization, fall-back
solution in features reconstruction processes, simulating urban climate represented as vector fields, and true-to-life representation
solution for complex elements such as solitary vegetation objects. It permits 3D city modelers to handle points clouds in a native way
reducing files size and avoiding redundancy. All developments and documentation are available open-source.

* Corresponding author

1. INTRODUCTION

3D point cloud is an emerging information representation mode.
Interest in its support is growing fast. It is often the groundwork
for decision-making applications used under as-built or
updating conditions (monitoring, inspection, control, etc.).
Improving geographical information systems to support them
could open possibilities and even more so in the urban built
environment. The last version of the OGC CityGML Standard
v3.0 provides new features to support 3D Point Clouds in city
objects and furniture. It is a significant improvement of its core
module and opens new visualization and rendering capabilities
(Kutzner et al., 2020).

Still, this conceptual change needs to be translated into a
practical solution. Besides, the current version of CityJSON
(v1.0.1) implements most of the CityGML v2.0 data model
using the lightweight JSON encoding of the CityGML data
model (Ledoux et al., 2019). It is the new promising way to
handle geoinformation following the aforementioned CityGML
data model. While benefitting the CityJSON encoding, the
necessity to support 3D Point Clouds should be investigated in
line with the 3.0 version of CityGML.

The paper aims to propose the translation of the new point
cloud module of CityGML v3.0 into a CityJSON extension.
This integrated 3D point cloud support solves several problems
encountered in the last years, as illustrated in the use cases. The
rest of the paper is organized as follows: in section 2, we
present a state-of-the-art management of point clouds in web
geographical information systems. Section 3 develops our
methodology for the implementation of the extension. In section
4, we discuss and evaluate its support and illustrate the defined
extension in various use cases:
(1) Fall-back solution in the case where a vector geometry is
difficult to generate;
(2) High-detailed interiors for building features;
(3) Simulating urban climate represented as vector fields;
(4) True-to-life representation solution for complex elements
such as solitary vegetation.

In the same section, we discuss results and draw future works
for this field of research. The conclusion is presented in Section
5.

2. RELATED WORKS

Point clouds are relevent data sources in the urban built
environment (Wang et al., 2020). They are considered primary
sources of geometric information in many processes as the
efficiency and stability of acquisition systems improve.
Moreover, information on surface can be assessed, including the
nature of the material thanks to the response intensity.

Even if points are basic primitives, alone, they are not very
relevant: point clouds need to aggregate a huge number of them
to represent elements in details. Hence, the processing and
features extraction of a significant number of points can be
troublesome (Wang et al., 2020). Because of the performances
needs, data segmentation is a necessary step before any practical
use. Semantic information linked to point batches improve the
knowledge on captured factual information (Poux et al., 2017).
In a second step, the abstraction of clouds and their distribution
in objects classes open modelling capabilities.

A mixed visualization between dense and semantically rich 3D
point clouds and abstracted cartographic objects can enjoy the
benefits of both specificities (Nebiker et al., 2010). For
instance, in the urban built environment, typical actors such as
pedestrians and drivers can be aware of the reality on the
ground thanks to this mixed representation micro-scale
environment. The abstraction imposed by city modelling
standards might thus be avoided (e.g., trees are often
generalized as cones or spheres on the top of a cylinder).

Maintaining point clouds as they stand allows a more efficient
and reliable analysis while keeping a complex rendering when it
comes helpful (Brunnhuber et al., 2017). The visual expression
of point cloud models reveals the physical form of the
environment (Urech et al., 2020). Employing point cloud
models as a source for design development in landscape
projects avoids smoothing and distorting real world scenes.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2021
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-301-2021 | © Author(s) 2021. CC BY 4.0 License.

301

Forward, it can be used to create audio-visual landscape stimuli
and thus improve the immersion in a virtual environment
(Spielhofer et al., 2017).

Beside the semantic usability of a mixed representation, point
clouds and objects meshes are not the same from a technical and
format point of view. An effort should be placed in rendering
both points and objects concurrently. Once again, performances
are point of interest. Some common web-related libraries are
limited to efficient visualization but do not handle semantic
information natively (ThreeJS and Potree based on WebGL)
(Buyukdemircioglu & Kocaman, 2018). It is therefore necessary
to propose another solution for the formatting of this
information. Besides, rendering point clouds can be
performance intensive and thus do not perform well in
geographic librairies (e.g. CesiumJS). The balance between the
two need to be found (Discher et al., 2019).

Recently, the new CityJSON facilitates the evolution of advance
decision-making processes. For instance, its lightness and ease
to maintain are demonstrated in flood simulations and complex
semantic view analysis (Kumar et al., 2018; Virtanen et al.,
2021). Still, its core module (v1.0.1) has not been much
extended for now, with one exception on topological
representation (Stelios Vitalis et al., 2019).

Besides, technical developments around CityJSON offer more
and more application areas and tools for the management of 3D
city models: the QGIS plugin (Stelios Vitalis et al., 2020), the
automatic 3D model generation based on airborne LiDAR point
cloud and the native support of metadata (Nys, Billen, et al.,
2020), etc.

3. METHODOLOGY

This section states the different choices and decisions that lead
to creating the point cloud extension for v1.0.1 CityJSON. The
will is to propose a method that is easily reproducible and
scalable due to the cumbersome and sometimes very complex
nature of point clouds. The concern is to handle standard point
clouds formats into a 3D model, not to process point clouds to
create 3D models. Both modes are considered as
complementary since they propose different information
representations with their benefits.

3.1 CityJSON extensibility

The purpose of our proposition is to create an extension of
CityJSON to support the integration of a PointCloud module
according to the CityGML v3.0 specifications in JSON
schemas. A CityJSON extension is a JSON file that documents
how the core data model (i.e. JSON schemas) may be extended
to increase its features and/or attributes. It differs from the
CityGML ADEs, which impose software to handle additional
features and thus need them to extend their support (Biljecki et
al., 2018). Even if ADEs are considered as built-in mechanisms,
the addition of information through ADEs impose the creation
of new tables to store and encode it in relational models.

This statement is not true in the case of CityJSON if relational
databases are abandoned in favour of file-based or even NoSQL
management. Additional information is inserted in the initial
model thanks to the JSON-encoding of the data model and its
native JSON objects-based management. Figure 1 schematizes
how the additional information are handled in both XML and
JSON encoding of the CityGML data model.

Figure 1. Extensions of the encoding

For the reminder, extending the CityGML core model's
specifications could lead to software issues that are based on its
XML-encoding (i.e. storage in relational databases). The vast
majority of software support the addition of extensions but are
limited because if relies on the XML-encoding. An additional
effort is mandatory to process extended models. Conversely,
extended CityJSON files remain CityJSON files and might
improve the dataset information, including the integrated
metadata (Nys, Poux, et al., 2020). Hence, providing an
integrated and convenient extension is a great practical advance
for existing CityJSON datasets and all the software supporting
it. If the software does not include the extension support, it is
neglected but the remaining file is still consistent and does not
limit its use.

3.2 Features improvements

Extending CityJSON specifications might improve three
different methods: creating a new object class, extending a
model's properties, or extending the feature's attribute. While
the two former solution are not relevant in this case, the latter is
the most beneficial. The CityGML PointCloud module is
presented as an improvement to all CityObjects. The model is
not altered itself and the addition of CityObjects does not need
to be investigated.

Following the CityGML 3.0 specifications, the point cloud
module should support the storage of information related to
point clouds differently: either inline directly within the model
in a geometric aggregate such as MultiPoint, either as a link to
external resource (i.e. common type such as LAS file). The
usage of absolute URIs (Uniform Resource Identifier) should be
preferred. Note that, since the CityJSON specifications do not
yet support all the 3.0 CityGML data model features, the
extension has been modelled at a high level in the features
modelling. Hence, thanks to the features’ hierarchy, the notion
of space is neglected for the moment but will easily be updated
once a new version will be available.

For the former solution (i.e. the inline geometry), some features
type already support a representation mode as MultiPoint
geometries (i.e. Installations, SolitaryVegetationObjects, etc.).
In the case where it was not yet possible, a change in the
supported object geometries for each object type is made. This
modification is straightforward and does not require any other
update of the JSON schema except the addition of the
MultiPoint value in the enumerated supported geometry types:

"_AbstractBuilding": {
 "geometry": {
 "type": "array",
 "items": {
 "oneOf": [{ "+$ref":
"../geomptrimitives.schema.json#/MultiPoint" }]
 }
 }
}

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2021
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-301-2021 | © Author(s) 2021. CC BY 4.0 License.

302

For the second, a web address (i.e. URI) provides a direct
download link of an external resource. While the resource can
be referred using a local path, an absolute path could take
advantage of the availability of open datasets. One can imagine
that registered clouds from cultural heritage elements or simple
building greatly improve the rendering of a scene. No limit or
characteristic are specified for the resource apart its format.

Indeed, some information on the resource are mandatory but
does not limit the number of points, the file size, etc.: its
MimeType attribute, the two-parts label used to identify a type
of data transmitted on the web; the pointFile attribute, the
external link itself; and the pointFileSrName, the identifier of
the spatial reference system in which the cloud has been
registered (if available). The CityJSON extension proposes to
handle this information in a simple JSON object pointcloud-file.
This new JSON object can be nested in every CityObject if
needed:

"+pointcloud-file": {
 "type": "object",
 "properties": {
 "mimeType": {
 "type": "string"
 },
 "pointFile": {
 "type": "string",
 "format": "uri-reference"
 },
 "pointFileSrsName": {
 "type": "string",
 "default": "EPSG:4326"
 }
 }
}

The rendering of both representation mode formatted in the
CityJSON extension has been made in a WebGL environment
based on the NINJA viewer (S. Vitalis et al., 2020). The support
of point’s geometries needed a small improvement of the
software. However, the ease of extending the CityJSON
capabilities has been demonstrated in the software component
update. The code is open source and available on the web under
an Apache-2.0 license (https://github.com/GANys/Measur3D).
There is no difference with other objects: point clouds can be
selected, their attributes can be update or deleted, some can be
added, etc.

4. EXPERIMENT RESULTS AND DISCUSSION

This section discusses the application of the defined extension
in various uses cases and examples. Both inline and external
link solutions are illustrated in the same example. Its
documentation and the updated CityJSON schemas, some
example can be found in the open-source git repository of the
extension project on the web
(https://github.com/GANys/cityjson-pointcloud).

4.1 Object generation fall-back solution

No limitation to using the MultiPoint geometry as city features
representation has been formulated in the specifications. Hence,
an airborne point cloud can itself be a good city model portrayal
if it complies with minimal conditions. Even though it may
seem like an aberration, a point cloud, which is correctly
segmented and classified, is thus a valid CityJSON model. For

instance, the LAS classification of airborne LiDAR data can be
used in order to decompose the point cloud into different object
types. A generic mapping can link a batch of points to the
semantic definition of a city object type.

Afterwards, the city objects are enriched by semantic
information and metadata. It is here important to note that this
link can be done at the level of the object and not on the whole
point cloud. One can improve batches independently and
perhaps follow its evolution through the city model versions.
Furthermore, an independent management of the objects and
their geometries allows handling object attributes without
mobilizing resources for the geometry (geometries are the heavy
part of objects). This object-based management provides also all
the CRUD operations (Create, Read, Update, Delete) even if
features are initially part of a more general point clouds. The
Figure 2 gives an extreme example where the entire model is
represented as the aggregation of a point sub-cloud for every
city object.

Figure 2. Visualization of an urban model CityJSON in point

cloud only (33.811 points)

4.2 High-detailed features

In a more hybrid way, illustrations of combined geometry types
solutions are also possible: we used such added modelling
support in particular when a roof reconstruction process did not
find any consistent solution for the roof shapes (Nys, Poux, et
al., 2020). The point cloud offers a satisfactory fall-back result
for the representation of the complexity of the roofs. If the roof
shape has not been generalized, it can be rendered as points, a
mesh, etc.

Furthermore, some interesting features can be extracted from
clouds and meshes. Even if planes and 3D objects have not
been correctly generated, some usage can still be performed. It
does not limit operations such as normals evaluations. The
normals are for instance useful to determine the orientation and
the slope of urban roofs. These characteristics are mandatory to
determine the potential of urban greening with green roofs.
Urban green infrastructures impose a slope lesser than 5° and a
minimum area of 10 square meters (the area can be obtained by
projecting points and meshes on the horizontal plane and
determining their minimal bounding box to within a factor of
the slope) (Joshi et al., 2020). As a result, it provides
preliminary results for the small part of miss-generated roofs (of
the order of a few percent of the dataset). Everything is stored in
the CityJSON file to render and provide building information.

Besides using airborne point cloud, hybrid models involving
terrestrial clouds are used to render the interior of buildings and
thus make a link between the neighbourhood and the property
unit. The main advantage is that these elements are not only
topologically but also semantically linked. No external mapping

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2021
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-301-2021 | © Author(s) 2021. CC BY 4.0 License.

303

is thus necessary to communicate information between the two
levels-of-definition.

Figure 3 illustrates a CityJSON Building, or at least the
abstraction of a Building, in which a BuildingPart is rendered.
The BuildingPart is a LAS point cloud loaded remotely from a
web server into a MultiPoint geometry. It is a good example of
a non-distorted representation thanks to point clouds. Note that,
CityJSON can be improved and extended in order to support a
deeper level of object definition. It could define object classes
such as walls, floor, openings, etc. This improvement will make
a step further to a more effortless merging with IFC and thus
follows the initial trend engaged by CityGML 3.0 on a semantic
level (Kutzner et al., 2020).

Figure 3. Mixed visualization of a Building and its detailed

interior as BuildingPart (417.138 points)

4.3 Representation of vector fields and dynamic sources

In the third exploratory scenario, point clouds should be used to
visualize the distribution of scalar phenomenon as vector fields:
climate, airflow and pollution data, etc. It can thus represent
information along the three dimensions of space and their entire
scale of values. It offers solutions to render simulation results as
value-related 3D point cloud (Gautier et al., 2020). Supporting
point clouds directly in the schema model is a gain to achieve
an integration from a semantic perspective.

About dynamic changes, it is interesting to discuss two points:
(1) remote point clouds can change dynamically; (2) point
clouds can represent source of dynamic data. Remote data
changing dynamically are called Dynamizers in CityGML
(Chaturvedi & Kolbe, 2015). In the 3.0 version of CityGML,
the dynamizers are now supported natively. Without naming it
specifically, external links to dynamic data are alike dynamizers
from a conceptual viewpoint. This sets a precedent and will
open up CityJSON to further improvements and extension for
dynamizers.

Sensors data have a point-like spatialization in location-based
applications. Taking the example of a trajectory, it represents
many points in an ordered list. Hence, a MultiPoint geometry
should provide a solution to represent trajectories in 3D city
models. A multiple geometry's discrete management might
allow interaction with it also (Liu et al., 2019). Nevertheless,
the v1.0.1 CityJSON core is not ready to handle this type of
feature natively. It corresponds to no actual type.

Besides, no current city objects type can represent such
elements. For instance, this can explain the creation of
FeatureOfInterest objects, which are objects that are evaluated
by the procedure, in the sensors OGC standards:

SensorObservationService and SensorThings API OGC. We
believe that opening their representation will open possibilities
to managing sensors information in a more suitable manner in
3D city models. This extension should permit such
development.

4.4 True-to-life representation for complex elements

Finally, point clouds are used in order to render elements that
might be distorted during the modelling. For instance, the
generalization of which leads to a loss of reliability such as
solitary vegetation can reduce the design usefulness. For the
urban built environment, examples are churches, minarets, etc.
Since the number of geometries is not limited and the different
Geometry Objects of a given CityObject do not have be of
different LoDs, several object geometries can be defined for
every city object. One can then have a similar third level
defined in point clouds and meshes (point clouds are obligatory
LoD 3.x) or a more detailed one if meshes are more generic
than the point cloud.

 About the solitary vegetation, it thus allows us to avoid the use
of GeometryInstances and Templates from CityJSON. Such
templates distort the true-to-life representation of anisotropic
object. Nevertheless, it increases the file size given that
information is not simplified in a broad template. The sparse
nature of the point cloud seems more faithful to reality than a
cone or a generic sphere (see Figure 4 and Figure 5). It is seen
as a better modelling of the canopy’s transparency and a wind
resistance.

Figure 4. Trees rendering as GeometryTemplates from the

railway.json dummy

Figure 5. 3D city model in which SolitaryVegetationObject are

rendered as MultiPoint geometries

An important discussion should take place on the file size and
the counterpart taken with the will behind CityJSON. The initial
concern of CityJSON is to provide a lightweight alternative to
the XML encoding of CityGML. For the reminder, two
solutions are proposed to support point clouds in this extension:
inline geometries and external links. Both have their pros and
cons: while the former does not impose interactions and
exchanges of information, the second is the best solution to
avoid making a file unwieldy. It is therefore perhaps not a good
idea to use inline point clouds in CityJSON. Still, it is now a
possibility, but it goes against a wider use of 3D city models

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2021
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-301-2021 | © Author(s) 2021. CC BY 4.0 License.

304

over the web, on small devices, or even if bandwidth is a
concern. All the more so as an offline use is impossible.

Quantitative information about file size of the presented
example are the following. The example illustrated in Figure 2
shows that the LAS cloud weights 1.35Mb and its CityJSON
counterpart is a 1.73Mb. The city model includes 237 objects of
which are Buildings, TINRelief and SolitaryVegetationObjects.
For the example on Figure 3, the CityJSON file is 1.68Kb large
and the remote LAS file is 13.85Mb. The weight ratio is not
comparable. Indeed, while the Building object counts eight
vertices, the MultiPoint for the BuildingPart counts a total of
417138 points. Note that the web browser performances are not
a concern, as an efficient rendering was not the contribution of
this paper. No such problems were encountered during the
development of the extended scheme and viewer.

Point clouds are now supported to render and visualize in 3D
CityJSON models. Mixed models can be queried and delivered
over the web. Future work will study the possibilities of spatial
analysis and computation on point clouds in urban built
environment.

5. CONCLUSION

This paper proposes a solution for merging point clouds and 3D
city models. It consists in an extension of the CityJSON
encoding to support point clouds. Two solutions are proposed:
inline geometries and external link. It follows the CityGML 3.0
specifications. While the extension is straightforward, its
applications are numerous and open possibilities: climate
analysis, landscape projects, BIM, etc. Among others, the
present research illustrates technical capabilities without going
into pure application: object generation fall-back solution, high-
detailed features, representation of vector fields and true-to-life
representation for complex features. It is mandatory to keep an
eye on providing a lightweight encoding: the model size. We
therefore encourage users to prefer the external link solution
rather than weighing down the models and geometries.

REFERENCES

Biljecki, F., Kumar, K., & Nagel, C. (2018). CityGML
Application Domain Extension (ADE): Overview of
developments. Open Geospatial Data, Software and Standards,
3(1), 13. https://doi.org/10.1186/s40965-018-0055-6

Brunnhuber, M., May, M., Traxler, C., Hesina, G., Glatzl, R., &
Kontrus, H. (2017). Using Different Data Sources for New
Findings in Visualization of Highly Detailed Urban Data.
Proceedings of 22nd International Conference on Urban
Planning, Regional Development and Information Society,
637–646.

Buyukdemircioglu, M., & Kocaman, S. (2018). A 3D CAMPUS
APPLICATION BASED ON CITY MODELS AND WEBGL.
ISPRS - International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, XLII–5, 161–165.
https://doi.org/10.5194/isprs-archives-XLII-5-161-2018

Chaturvedi, K., & Kolbe, T. H. (2015). Dynamizers—Modeling
and Implementing Dynamic Properties for Semantic 3D City
Models. https://doi.org/10.2312/udmv.20151348

Discher, S., Richter, R., & Döllner, J. (2019). Concepts and
techniques for web-based visualization and processing of
massive 3D point clouds with semantics. Graphical Models,
104, 101036. https://doi.org/10.1016/j.gmod.2019.101036

Gautier, J., Christophe, S., & Brédif, M. (2020).
VISUALIZING 3D CLIMATE DATA IN URBAN 3D
MODELS. ISPRS - International Archives of the
Photogrammetry, Remote Sensing and Spatial Information
Sciences, XLIII-B4-2020, 781–789.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-781-2020

Joshi, M. Y., Selmi, W., Binard, M., Nys, G.-A., & Teller, J.
(2020). POTENTIAL FOR URBAN GREENING WITH
GREEN ROOFS: A WAY TOWARDS SMART CITIES.
ISPRS Annals of Photogrammetry, Remote Sensing and Spatial
Information Sciences, VI-4/W2-2020, 87–94.
https://doi.org/10.5194/isprs-annals-VI-4-W2-2020-87-2020

Kumar, K., Ledoux, H., & Stoter, J. (2018). Dynamic 3D
Visualization of Floods: Case of the Netherlands. ISPRS -
International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, XLII-4/W10, 83–87.
https://doi.org/10.5194/isprs-archives-XLII-4-W10-83-2018

Kutzner, T., Chaturvedi, K., & Kolbe, T. H. (2020). CityGML
3.0: New Functions Open Up New Applications. PFG –
Journal of Photogrammetry, Remote Sensing and
Geoinformation Science. https://doi.org/10.1007/s41064-020-
00095-z

Ledoux, H., Ohori, K. A., Kumar, K., Dukai, B., Labetski, A.,
& Vitalis, S. (2019). CityJSON: A compact and easy-to-use
encoding of the CityGML data model. ArXiv:1902.09155 [Cs].
http://arxiv.org/abs/1902.09155

Liu, D., Peng, J., Wang, Y., Huang, M., He, Q., Yan, Y., Ma,
B., Yue, C., & Xie, Y. (2019). Implementation of interactive
three-dimensional visualization of air pollutants using WebGL.
Environmental Modelling & Software, 114, 188–194.
https://doi.org/10.1016/j.envsoft.2019.01.019

Nebiker, S., Bleisch, S., & Christen, M. (2010). Rich point
clouds in virtual globes – A new paradigm in city modeling?
Computers, Environment and Urban Systems, 34(6), 508–517.
https://doi.org/10.1016/j.compenvurbsys.2010.05.002

Nys, G.-A., Billen, R., & Poux, F. (2020). AUTOMATIC 3D
BUILDINGS COMPACT RECONSTRUCTION FROM
LIDAR POINT CLOUDS. ISPRS - International Archives of
the Photogrammetry, Remote Sensing and Spatial Information
Sciences, XLIII-B2-2020, 473–478.
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-473-2020

Nys, G.-A., Poux, F., & Billen, R. (2020). CityJSON Building
Generation from Airborne LiDAR 3D Point Clouds. ISPRS
International Journal of Geo-Information, 9(9), 521.
https://doi.org/10.3390/ijgi9090521

Poux, F., Neuville, R., Van Wersch, L., Nys, G.-A., & Billen,
R. (2017). 3D Point Clouds in Archaeology: Advances in
Acquisition, Processing and Knowledge Integration Applied to
Quasi-Planar Objects. Geosciences, 7(4), 96.
https://doi.org/10.3390/geosciences7040096

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2021
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-301-2021 | © Author(s) 2021. CC BY 4.0 License.

305

Spielhofer, R., Fabrikant, S. I., Vollmer, M., Rebsamen, J.,
Grêt-Regamey, A., & Wissen Hayek, U. (2017). 3D Point
Clouds for Representing Landscape Change [Application/pdf].
https://doi.org/10.3929/ETHZ-B-000171222

Urech, P. R. W., Dissegna, M. A., Girot, C., & Grêt-Regamey,
A. (2020). Point cloud modeling as a bridge between landscape
design and planning. Landscape and Urban Planning, 203,
103903. https://doi.org/10.1016/j.landurbplan.2020.103903

Virtanen, J.-P., Jaalama, K., Puustinen, T., Julin, A., Hyyppä, J.,
& Hyyppä, H. (2021). Near Real-Time Semantic View Analysis
of 3D City Models in Web Browser. ISPRS International
Journal of Geo-Information, 10(3), 138.
https://doi.org/10.3390/ijgi10030138

Vitalis, S., Labetski, A., Boersma, F., Dahle, F., Li, X., Arroyo
Ohori, K., Ledoux, H., & Stoter, J. (2020). CITYJSON + WEB
= NINJA. ISPRS Annals of Photogrammetry, Remote Sensing
and Spatial Information Sciences, VI-4/W1-2020, 167–173.
https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-167-2020

Vitalis, Stelios, Arroyo Ohori, K., & Stoter, J. (2020).
CityJSON in QGIS: Development of an open‐source plugin.
Transactions in GIS, tgis.12657.
https://doi.org/10.1111/tgis.12657

Vitalis, Stelios, Ohori, K., & Stoter, J. (2019). Incorporating
Topological Representation in 3D City Models. ISPRS
International Journal of Geo-Information, 8(8), 347.
https://doi.org/10.3390/ijgi8080347

Wang, C., Wen, C., Dai, Y., Yu, S., & Liu, M. (2020). Urban
3D modeling with mobile laser scanning: A review. Virtual
Reality & Intelligent Hardware, 2(3), 175–212.
https://doi.org/10.1016/j.vrih.2020.05.003

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2021
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-301-2021 | © Author(s) 2021. CC BY 4.0 License.

306

