
AN EXTENSION OF CITYJSON TO SUPPORT POINT CLOUDS 
 

G.-A. Nys 1,*, A. Kharroubi 1, F. Poux 1, R. Billen 1 

 
1 Geomatics Unit, UR SPHERES, University of Liège (ULiège), Allée du six Août, 19, 4000 Liège, Belgium - (ganys, akharroubi, 

fpoux, rbillen)@uliege.be 
 
 

KEY WORDS: 3D City Models, CityJSON, CityGML, Smart Cities, Point Cloud 
 
 
ABSTRACT: 
 
The combination between dense point clouds and 3D vector objects permits new cartographic representation of urban information. 
This paper proposes an extension for the CityJSON encoding to support point clouds. Following the 3.0 CityGML specifications, 
attributes and features are added to the core module of v1.0.1 CityJSON. Two solutions are proposed: inline complex geometries and 
external link to a remote file. The extended schema can be illustrated in four scenarios: detailed features visualization, fall-back 
solution in features reconstruction processes, simulating urban climate represented as vector fields, and true-to-life representation 
solution for complex elements such as solitary vegetation objects. It permits 3D city modelers to handle points clouds in a native way 
reducing files size and avoiding redundancy. All developments and documentation are available open-source. 
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1. INTRODUCTION 

3D point cloud is an emerging information representation mode. 
Interest in its support is growing fast. It is often the groundwork 
for decision-making applications used under as-built or 
updating conditions (monitoring, inspection, control, etc.). 
Improving geographical information systems to support them 
could open possibilities and even more so in the urban built 
environment. The last version of the OGC CityGML Standard 
v3.0 provides new features to support 3D Point Clouds in city 
objects and furniture. It is a significant improvement of its core 
module and opens new visualization and rendering capabilities 
(Kutzner et al., 2020). 
 
Still, this conceptual change needs to be translated into a 
practical solution. Besides, the current version of CityJSON 
(v1.0.1) implements most of the CityGML v2.0 data model 
using the lightweight JSON encoding of the CityGML data 
model (Ledoux et al., 2019). It is the new promising way to 
handle geoinformation following the aforementioned CityGML 
data model. While benefitting the CityJSON encoding, the 
necessity to support 3D Point Clouds should be investigated in 
line with the 3.0 version of CityGML. 
 
The paper aims to propose the translation of the new point 
cloud module of CityGML v3.0 into a CityJSON extension. 
This integrated 3D point cloud support solves several problems 
encountered in the last years, as illustrated in the use cases. The 
rest of the paper is organized as follows: in section 2, we 
present a state-of-the-art management of point clouds in web 
geographical information systems. Section 3 develops our 
methodology for the implementation of the extension. In section 
4, we discuss and evaluate its support and illustrate the defined 
extension in various use cases:  
(1) Fall-back solution in the case where a vector geometry is 
difficult to generate; 
(2) High-detailed interiors for building features;  
(3) Simulating urban climate represented as vector fields;  
(4) True-to-life representation solution for complex elements 
such as solitary vegetation. 

In the same section, we discuss results and draw future works 
for this field of research. The conclusion is presented in Section 
5. 
 

2. RELATED WORKS 

Point clouds are relevent data sources in the urban built 
environment (Wang et al., 2020). They are considered primary 
sources of geometric information in many processes as the 
efficiency and stability of acquisition systems improve. 
Moreover, information on surface can be assessed, including the 
nature of the material thanks to the response intensity. 
 
Even if points are basic primitives, alone, they are not very 
relevant: point clouds need to aggregate a huge number of them 
to represent elements in details. Hence, the processing and 
features extraction of a significant number of points can be 
troublesome (Wang et al., 2020). Because of the performances 
needs, data segmentation is a necessary step before any practical 
use. Semantic information linked to point batches improve the 
knowledge on captured factual information (Poux et al., 2017). 
In a second step, the abstraction of clouds and their distribution 
in objects classes open modelling capabilities. 
 
A mixed visualization between dense and semantically rich 3D 
point clouds and abstracted cartographic objects can enjoy the 
benefits of both specificities (Nebiker et al., 2010). For 
instance, in the urban built environment, typical actors such as 
pedestrians and drivers can be aware of the reality on the 
ground thanks to this mixed representation micro-scale 
environment. The abstraction imposed by city modelling 
standards might thus be avoided (e.g., trees are often 
generalized as cones or spheres on the top of a cylinder). 
 
Maintaining point clouds as they stand allows a more efficient 
and reliable analysis while keeping a complex rendering when it 
comes helpful (Brunnhuber et al., 2017). The visual expression 
of point cloud models reveals the physical form of the 
environment (Urech et al., 2020). Employing point cloud 
models as a source for design development in landscape 
projects avoids smoothing and distorting real world scenes. 
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Forward, it can be used to create audio-visual landscape stimuli 
and thus improve the immersion in a virtual environment 
(Spielhofer et al., 2017). 
 
Beside the semantic usability of a mixed representation, point 
clouds and objects meshes are not the same from a technical and 
format point of view. An effort should be placed in rendering 
both points and objects concurrently. Once again, performances 
are point of interest. Some common web-related libraries are 
limited to efficient visualization but do not handle semantic 
information natively (ThreeJS and Potree based on WebGL) 
(Buyukdemircioglu & Kocaman, 2018). It is therefore necessary 
to propose another solution for the formatting of this 
information. Besides, rendering point clouds can be 
performance intensive and thus do not perform well in 
geographic librairies (e.g. CesiumJS). The balance between the 
two need to be found (Discher et al., 2019). 
 
Recently, the new CityJSON facilitates the evolution of advance 
decision-making processes. For instance, its lightness and ease 
to maintain are demonstrated in flood simulations and complex 
semantic view analysis (Kumar et al., 2018; Virtanen et al., 
2021). Still, its core module (v1.0.1) has not been much 
extended for now, with one exception on topological 
representation (Stelios Vitalis et al., 2019). 
 
Besides, technical developments around CityJSON offer more 
and more application areas and tools for the management of 3D 
city models: the QGIS plugin (Stelios Vitalis et al., 2020), the 
automatic 3D model generation based on airborne LiDAR point 
cloud and the native support of metadata (Nys, Billen, et al., 
2020), etc. 
 

3. METHODOLOGY 

This section states the different choices and decisions that lead 
to creating the point cloud extension for v1.0.1 CityJSON. The 
will is to propose a method that is easily reproducible and 
scalable due to the cumbersome and sometimes very complex 
nature of point clouds. The concern is to handle standard point 
clouds formats into a 3D model, not to process point clouds to 
create 3D models. Both modes are considered as 
complementary since they propose different information 
representations with their benefits. 
 
3.1 CityJSON extensibility 

The purpose of our proposition is to create an extension of 
CityJSON to support the integration of a PointCloud module 
according to the CityGML v3.0 specifications in JSON 
schemas. A CityJSON extension is a JSON file that documents 
how the core data model (i.e. JSON schemas) may be extended 
to increase its features and/or attributes. It differs from the 
CityGML ADEs, which impose software to handle additional 
features and thus need them to extend their support (Biljecki et 
al., 2018). Even if ADEs are considered as built-in mechanisms, 
the addition of information through ADEs impose the creation 
of new tables to store and encode it in relational models. 
 
This statement is not true in the case of CityJSON if relational 
databases are abandoned in favour of file-based or even NoSQL 
management. Additional information is inserted in the initial 
model thanks to the JSON-encoding of the data model and its 
native JSON objects-based management. Figure 1 schematizes 
how the additional information are handled in both XML and 
JSON encoding of the CityGML data model. 

 

 
Figure 1. Extensions of the encoding 

 
For the reminder, extending the CityGML core model's 
specifications could lead to software issues that are based on its 
XML-encoding (i.e. storage in relational databases). The vast 
majority of software support the addition of extensions but are 
limited because if relies on the XML-encoding. An additional 
effort is mandatory to process extended models. Conversely, 
extended CityJSON files remain CityJSON files and might 
improve the dataset information, including the integrated 
metadata (Nys, Poux, et al., 2020). Hence, providing an 
integrated and convenient extension is a great practical advance 
for existing CityJSON datasets and all the software supporting 
it. If the software does not include the extension support, it is 
neglected but the remaining file is still consistent and does not 
limit its use. 
 
3.2 Features improvements 

Extending CityJSON specifications might improve three 
different methods: creating a new object class, extending a 
model's properties, or extending the feature's attribute. While 
the two former solution are not relevant in this case, the latter is 
the most beneficial. The CityGML PointCloud module is 
presented as an improvement to all CityObjects. The model is 
not altered itself and the addition of CityObjects does not need 
to be investigated. 
 
Following the CityGML 3.0 specifications, the point cloud 
module should support the storage of information related to 
point clouds differently: either inline directly within the model 
in a geometric aggregate such as MultiPoint, either as a link to 
external resource (i.e. common type such as LAS file). The 
usage of absolute URIs (Uniform Resource Identifier) should be 
preferred. Note that, since the CityJSON specifications do not 
yet support all the 3.0 CityGML data model features, the 
extension has been modelled at a high level in the features 
modelling. Hence, thanks to the features’ hierarchy, the notion 
of space is neglected for the moment but will easily be updated 
once a new version will be available. 
 
For the former solution (i.e. the inline geometry), some features 
type already support a representation mode as MultiPoint 
geometries (i.e. Installations, SolitaryVegetationObjects, etc.). 
In the case where it was not yet possible, a change in the 
supported object geometries for each object type is made. This 
modification is straightforward and does not require any other 
update of the JSON schema except the addition of the 
MultiPoint value in the enumerated supported geometry types: 
 
"_AbstractBuilding": { 
   "geometry": { 
      "type": "array", 
      "items": { 
         "oneOf": [{ "+$ref": 
"../geomptrimitives.schema.json#/MultiPoint" }] 
      } 
   } 
} 
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For the second, a web address (i.e. URI) provides a direct 
download link of an external resource. While the resource can 
be referred using a local path, an absolute path could take 
advantage of the availability of open datasets. One can imagine 
that registered clouds from cultural heritage elements or simple 
building greatly improve the rendering of a scene. No limit or 
characteristic are specified for the resource apart its format. 
 
Indeed, some information on the resource are mandatory but 
does not limit the number of points, the file size, etc.: its 
MimeType attribute, the two-parts label used to identify a type 
of data transmitted on the web; the pointFile attribute, the 
external link itself; and the pointFileSrName, the identifier of 
the spatial reference system in which the cloud has been 
registered (if available). The CityJSON extension proposes to 
handle this information in a simple JSON object pointcloud-file. 
This new JSON object can be nested in every CityObject if 
needed: 
 
"+pointcloud-file": { 
   "type": "object", 
   "properties": { 
      "mimeType": { 
         "type": "string" 
      }, 
      "pointFile": { 
         "type": "string", 
         "format": "uri-reference" 
      }, 
      "pointFileSrsName": { 
         "type": "string", 
         "default": "EPSG:4326" 
      } 
   } 
} 
 
The rendering of both representation mode formatted in the 
CityJSON extension has been made in a WebGL environment 
based on the NINJA viewer (S. Vitalis et al., 2020). The support 
of point’s geometries needed a small improvement of the 
software. However, the ease of extending the CityJSON 
capabilities has been demonstrated in the software component 
update. The code is open source and available on the web under 
an Apache-2.0 license (https://github.com/GANys/Measur3D). 
There is no difference with other objects: point clouds can be 
selected, their attributes can be update or deleted, some can be 
added, etc. 
  

4. EXPERIMENT RESULTS AND DISCUSSION 

This section discusses the application of the defined extension 
in various uses cases and examples. Both inline and external 
link solutions are illustrated in the same example. Its 
documentation and the updated CityJSON schemas, some 
example can be found in the open-source git repository of the 
extension project on the web 
(https://github.com/GANys/cityjson-pointcloud). 
 
4.1 Object generation fall-back solution 

No limitation to using the MultiPoint geometry as city features 
representation has been formulated in the specifications. Hence, 
an airborne point cloud can itself be a good city model portrayal 
if it complies with minimal conditions. Even though it may 
seem like an aberration, a point cloud, which is correctly 
segmented and classified, is thus a valid CityJSON model. For 

instance, the LAS classification of airborne LiDAR data can be 
used in order to decompose the point cloud into different object 
types. A generic mapping can link a batch of points to the 
semantic definition of a city object type. 
 
Afterwards, the city objects are enriched by semantic 
information and metadata. It is here important to note that this 
link can be done at the level of the object and not on the whole 
point cloud. One can improve batches independently and 
perhaps follow its evolution through the city model versions. 
Furthermore, an independent management of the objects and 
their geometries allows handling object attributes without 
mobilizing resources for the geometry (geometries are the heavy 
part of objects). This object-based management provides also all 
the CRUD operations (Create, Read, Update, Delete) even if 
features are initially part of a more general point clouds. The 
Figure 2 gives an extreme example where the entire model is 
represented as the aggregation of a point sub-cloud for every 
city object. 
 

 
Figure 2. Visualization of an urban model CityJSON in point 

cloud only (33.811 points) 
 
4.2 High-detailed features 

In a more hybrid way, illustrations of combined geometry types 
solutions are also possible: we used such added modelling 
support in particular when a roof reconstruction process did not 
find any consistent solution for the roof shapes (Nys, Poux, et 
al., 2020). The point cloud offers a satisfactory fall-back result 
for the representation of the complexity of the roofs. If the roof 
shape has not been generalized, it can be rendered as points, a 
mesh, etc. 
 
Furthermore, some interesting features can be extracted from 
clouds and meshes. Even if planes and 3D objects have not 
been correctly generated, some usage can still be performed. It 
does not limit operations such as normals evaluations. The 
normals are for instance useful to determine the orientation and 
the slope of urban roofs. These characteristics are mandatory to 
determine the potential of urban greening with green roofs. 
Urban green infrastructures impose a slope lesser than 5° and a 
minimum area of 10 square meters (the area can be obtained by 
projecting points and meshes on the horizontal plane and 
determining their minimal bounding box to within a factor of 
the slope) (Joshi et al., 2020). As a result, it provides 
preliminary results for the small part of miss-generated roofs (of 
the order of a few percent of the dataset). Everything is stored in 
the CityJSON file to render and provide building information. 
 
Besides using airborne point cloud, hybrid models involving 
terrestrial clouds are used to render the interior of buildings and 
thus make a link between the neighbourhood and the property 
unit. The main advantage is that these elements are not only 
topologically but also semantically linked. No external mapping 
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is thus necessary to communicate information between the two 
levels-of-definition. 
 
Figure 3 illustrates a CityJSON Building, or at least the 
abstraction of a Building, in which a BuildingPart is rendered. 
The BuildingPart is a LAS point cloud loaded remotely from a 
web server into a MultiPoint geometry. It is a good example of 
a non-distorted representation thanks to point clouds. Note that, 
CityJSON can be improved and extended in order to support a 
deeper level of object definition. It could define object classes 
such as walls, floor, openings, etc. This improvement will make 
a step further to a more effortless merging with IFC and thus 
follows the initial trend engaged by CityGML 3.0 on a semantic 
level (Kutzner et al., 2020). 
 

 
Figure 3. Mixed visualization of a Building and its detailed 

interior as BuildingPart (417.138 points) 
 
4.3 Representation of vector fields and dynamic sources 

In the third exploratory scenario, point clouds should be used to 
visualize the distribution of scalar phenomenon as vector fields: 
climate, airflow and pollution data, etc. It can thus represent 
information along the three dimensions of space and their entire 
scale of values. It offers solutions to render simulation results as 
value-related 3D point cloud (Gautier et al., 2020). Supporting 
point clouds directly in the schema model is a gain to achieve 
an integration from a semantic perspective. 
 
About dynamic changes, it is interesting to discuss two points: 
(1) remote point clouds can change dynamically; (2) point 
clouds can represent source of dynamic data. Remote data 
changing dynamically are called Dynamizers in CityGML 
(Chaturvedi & Kolbe, 2015). In the 3.0 version of CityGML, 
the dynamizers are now supported natively. Without naming it 
specifically, external links to dynamic data are alike dynamizers 
from a conceptual viewpoint. This sets a precedent and will 
open up CityJSON to further improvements and extension for 
dynamizers. 
 
Sensors data have a point-like spatialization in location-based 
applications. Taking the example of a trajectory, it represents 
many points in an ordered list. Hence, a MultiPoint geometry 
should provide a solution to represent trajectories in 3D city 
models. A multiple geometry's discrete management might 
allow interaction with it also (Liu et al., 2019). Nevertheless, 
the v1.0.1 CityJSON core is not ready to handle this type of 
feature natively. It corresponds to no actual type. 
 
Besides, no current city objects type can represent such 
elements. For instance, this can explain the creation of 
FeatureOfInterest objects, which are objects that are evaluated 
by the procedure, in the sensors OGC standards: 

SensorObservationService and SensorThings API OGC. We 
believe that opening their representation will open possibilities 
to managing sensors information in a more suitable manner in 
3D city models. This extension should permit such 
development. 
 
4.4 True-to-life representation for complex elements 

Finally, point clouds are used in order to render elements that 
might be distorted during the modelling. For instance, the 
generalization of which leads to a loss of reliability such as 
solitary vegetation can reduce the design usefulness. For the 
urban built environment, examples are churches, minarets, etc. 
Since the number of geometries is not limited and the different 
Geometry Objects of a given CityObject do not have be of 
different LoDs, several object geometries can be defined for 
every city object. One can then have a similar third level 
defined in point clouds and meshes (point clouds are obligatory 
LoD 3.x) or a more detailed one if meshes are more generic 
than the point cloud.  
 
 About the solitary vegetation, it thus allows us to avoid the use 
of GeometryInstances and Templates from CityJSON. Such 
templates distort the true-to-life representation of anisotropic 
object. Nevertheless, it increases the file size given that 
information is not simplified in a broad template. The sparse 
nature of the point cloud seems more faithful to reality than a 
cone or a generic sphere (see Figure 4 and Figure 5). It is seen 
as a better modelling of the canopy’s transparency and a wind 
resistance. 
 

 
Figure 4. Trees rendering as GeometryTemplates from the 

railway.json dummy 
 

 
Figure 5. 3D city model in which SolitaryVegetationObject are 

rendered as MultiPoint geometries 
 
An important discussion should take place on the file size and 
the counterpart taken with the will behind CityJSON. The initial 
concern of CityJSON is to provide a lightweight alternative to 
the XML encoding of CityGML. For the reminder, two 
solutions are proposed to support point clouds in this extension: 
inline geometries and external links. Both have their pros and 
cons: while the former does not impose interactions and 
exchanges of information, the second is the best solution to 
avoid making a file unwieldy. It is therefore perhaps not a good 
idea to use inline point clouds in CityJSON. Still, it is now a 
possibility, but it goes against a wider use of 3D city models 
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over the web, on small devices, or even if bandwidth is a 
concern. All the more so as an offline use is impossible. 
 
Quantitative information about file size of the presented 
example are the following. The example illustrated in Figure 2 
shows that the LAS cloud weights 1.35Mb and its CityJSON 
counterpart is a 1.73Mb. The city model includes 237 objects of 
which are Buildings, TINRelief and SolitaryVegetationObjects. 
For the example on Figure 3, the CityJSON file is 1.68Kb large 
and the remote LAS file is 13.85Mb. The weight ratio is not 
comparable. Indeed, while the Building object counts eight 
vertices, the MultiPoint for the BuildingPart counts a total of 
417138 points. Note that the web browser performances are not 
a concern, as an efficient rendering was not the contribution of 
this paper. No such problems were encountered during the 
development of the extended scheme and viewer. 
 
Point clouds are now supported to render and visualize in 3D 
CityJSON models. Mixed models can be queried and delivered 
over the web. Future work will study the possibilities of spatial 
analysis and computation on point clouds in urban built 
environment. 
 

5. CONCLUSION 

This paper proposes a solution for merging point clouds and 3D 
city models. It consists in an extension of the CityJSON 
encoding to support point clouds. Two solutions are proposed: 
inline geometries and external link. It follows the CityGML 3.0 
specifications. While the extension is straightforward, its 
applications are numerous and open possibilities: climate 
analysis, landscape projects, BIM, etc. Among others, the 
present research illustrates technical capabilities without going 
into pure application: object generation fall-back solution, high-
detailed features, representation of vector fields and true-to-life 
representation for complex features. It is mandatory to keep an 
eye on providing a lightweight encoding: the model size. We 
therefore encourage users to prefer the external link solution 
rather than weighing down the models and geometries. 
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