[en] Background: Despite the major advances in the fight against this parasitic disease, malaria remains a major cause of concerns in 2020. This infection, mainly due to Plasmodium falciparum, causes every year more than 200 million of cases and hundreds of thousands of deaths in developing regions, mostly in Africa. The last statistics show an increase of cases for the third consecutive year, from 211 million in 2015, it has reached 229 million in 2019. This trend could be partially explained by the appearance of resistances to all the used antimalarials, even to artemisinin. Thus, the design of new anti-Plasmodium compounds is an urgent need. For thousands of years, nature has offered to humans the medicines to cure their diseases or the inspiration for development of new active principles. It seems then logical to explore the natural sources to find new molecules to treat this parasitosis.
Method: Therefore, this review reports and analyzes the extracts (plants, bacteria, sponges, fungi) and the corresponding isolated compounds showing antiplasmodial properties between 2013 and 2019.
Results & Conclusion: Nature remains a major source of active compounds. Indeed, 648 molecules from various origins, mostly plants, have been reported for their inhibitory effect on Plasmodium falciparum. Among them, 188 scaffolds were defined as highly active with IC50 ≤ 5 µM and have been reported here in details. Moreover, the most active compounds showed a large variety of structures: flavonoids, triterpenes, alkaloids... Therefore, these compounds could be an interesting source of inspiration for medicinal chemists. May-be several of these molecules should become the next leads for malaria treatment.
Research Center/Unit :
CIRM - Centre Interdisciplinaire de Recherche sur le Médicament - ULiège
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Degotte, Gilles ; Université de Liège - ULiège > Département de pharmacie > Pharmacognosie
Pirotte, Bernard ; Université de Liège - ULiège > Département de pharmacie > Chimie pharmaceutique
Francotte, Pierre ; Université de Liège - ULiège > Département de pharmacie > Chimie pharmaceutique
Frederich, Michel ; Université de Liège - ULiège > Département de pharmacie > Pharmacognosie
Language :
English
Title :
Overview of natural antiplasmodials from the last decade to inspire medicinal chemistry
Publication date :
March 2021
Journal title :
Current Medicinal Chemistry
ISSN :
0929-8673
eISSN :
1875-533X
Publisher :
Bentham Science Publishers, Schiphol, Netherlands
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Malagic
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique Fondation Léon Fredericq
World Health Organization. World Malaria Report. 2020. Available at: https://www.who.int/publications/i/item/9789240015791 (Accessed date: Nov 30, 2020).
De Rycker, M.; Baragaña, B.; Duce, S.L.; Gilbert, I.H. Challenges and recent progress in drug discovery for tropi-cal diseases. Nature, 2018, 559(7715), 498-506. http://dx.doi.org/10.1038/s41586-018-0327-4 PMID: 30046073
Marhöfer, R.J.; Oellien, F.; Selzer, P.M. Drug discovery and the use of computational approaches for infectious dis-eases. Future Med. Chem., 2011, 3(8), 1011-1025. http://dx.doi.org/10.4155/fmc.11.60 PMID: 21707402
World Health Organization. World malaria report. 2019. Available at: https://www.who.int/news-room/feature-stories/detail/world-malaria-report-2019 (Accessed at: December 9, 2019).
World Health Organisation. World malaria report. 2018. Available at: https://www.who.int/malaria/publications/world-malaria-report-2018/report/en/(Accessed date: Dec 10, 2019).
Bloland, P.B. Drug resistance in malaria. 2001. Available at: https://www.who.int/drugresistance/publications/WHO_ CDS_CSR_DRS_2001_4/en/(Accessed date: Dec 26, 2020).
World Health Organization. Status report on artemisinin resistance. 2014. Available at: https://www.who.int/malaria/areas/drug_resistance/updates/en/(Accessed date: Dec 26, 2020).
Daniel, L. Klayman. Qinghaosu (Artemisinin): an antima-larial drug from China. Am. Assoc. Adv. Sci., 1985, 228(4703), 1049-1055. Available at: https://www.jstor.org/stable/1694273 (Accessed Date: 15 December, 2020).
de Araújo, R.V.; Santos, S.S.; Sanches, L.M.; Giarolla, J.; El Seoud, O.; Ferreira, E.I. Malaria and tuberculosis as diseases of neglected populations: state of the art in chemotherapy and advances in the search for new drugs. Mem. Inst. Oswaldo Cruz, 2020, 115, e200229. http://dx.doi.org/10.1590/0074-02760200229 PMID: 33053077
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661. http://dx.doi.org/10.1021/acs.jnatprod.5b01055 PMID: 26852623
Rieckmann, K.H. Amodiaquine in malaria treatment. Trans. R. Soc. Trop. Med. Hyg., 1987, 81(6), 1040. http://dx.doi.org/10.1016/0035-9203(87)90392-0 PMID: 3503407
Presser, A.; Feichtinger, A.; Buzzi, S. A simplified and scalable synthesis of artesunate. Monatsh. Chem., 2017, 148(1), 63-68. http://dx.doi.org/10.1007/s00706-016-1865-9 PMID: 28127092
Chekem, L.; Wierucki, S. Extraction de l’artémisinine et synthèse de ses dérivés: artésunate et artéméther. Phyto-therapie, 2007, 5(2), 90-95. http://dx.doi.org/10.1007/s10298-007-0218-6
Batista, R.; Silva, Ade.J.Jr; de Oliveira, A.B. Plant-derived antimalarial agents: new leads and efficient phytomedi-cines. Part II. Non-alkaloidal natural products. Molecules, 2009, 14(8), 3037-3072. http://dx.doi.org/10.3390/molecules14083037 PMID: 19701144
Xu, Y.-J.; Pieters, L. Recent developments in antimalarial natural products isolated from medicinal plants. Mini Rev. Med. Chem., 2013, 13(7), 1056-1072. http://dx.doi.org/10.2174/1389557511313070009 PMID: 22974400
Kaur, H.; Mukhtar, H.M.; Singh, A.; Mahajan, A. An-tiplasmodial medicinal plants: a literature review on effica-cy, selectivity and phytochemistry of crude plant extracts. J. Biol. Act. Prod. from Nat., 2018, 8(5), 272-294. http://dx.doi.org/10.1080/22311866.2018.1526651
Tajuddeen, N.; Van Heerden, F.R. Antiplasmodial natural products: an update. Malar. J., 2019, 18(1), 404. http://dx.doi.org/10.1186/s12936-019-3026-1 PMID: 31805944
Wangchuk, P.; Keller, P.A.; Pyne, S.G.; Korth, J. Samten; Taweechotipatr, M.; Rattanajak, R.; Kamchonwongpaisan, S. Antimicrobial, antimalarial and cytoxicity activities of constituents of a bhutanese variety of Ajania Nubigena. Nat. Prod. Commun., 2013, 8(6), 733-736. http://dx.doi.org/10.1177/1934578X1300800613
Cai, S.; Risinger, A.L.; Nair, S.; Peng, J.; Anderson, T.J.C.; Du, L.; Powell, D.R.; Mooberry, S.L.; Cichewicz, R.H. Identification of compounds with efficacy against malaria parasites from common North American plants. J. Nat. Prod., 2016, 79(3), 490-498. http://dx.doi.org/10.1021/acs.jnatprod.5b00874 PMID: 26722868
Wang, L.; Zhang, S.; Zhu, J.; Zhu, L.; Liu, X.; Shan, L.; Huang, J.; Zhang, W.; Li, H. Identification of diverse natural products as falcipain-2 inhibitors through structure-based virtual screening. Bioorg. Med. Chem. Lett., 2014, 24(5), 1261-1264. http://dx.doi.org/10.1016/j.bmcl.2014.01.074 PMID: 24530004
Irungu, B.N.; Orwa, J.A.; Gruhonjic, A.; Fitzpatrick, P.A.; Landberg, G.; Kimani, F.; Midiwo, J.; Erdélyi, M.; Yenesew, A. Constituents of the roots and leaves of Ekebergia capensis and their potential antiplasmodial and cytotoxic activities. Molecules, 2014, 19(9), 14235-14246. http://dx.doi.org/10.3390/molecules190914235 PMID: 25211004
Tjahjandarie, T.S.; Pudjiastuti, P.; Saputri, R.D.; Tanjung, M. Antimalarial and antioxidant activity of phenolic compounds isolated from Erythrina crista-galli L. J. Chem. Pharm. Res., 2014, 6(4), 786-790.
Azebaze, A.G.; Teinkela, J.E.; Nguemfo, E.L.; Valentin, A.; Dongmo, A.B.; Vardamides, J.C. Antiplasmodial activity of some phenolic compounds from Cameroonians Allanblack-ia. Afr. Health Sci., 2015, 15(3), 835-840. http://dx.doi.org/10.4314/ahs.v15i3.18 PMID: 26957972
Rajachan, O.; Kanokmedhakul, S.; Nasomjai, P.; Kanok-medhakul, K. Chemical constituents and biological activities from roots of Enkleia siamensis. In: Nat. Prod. Res., 2014; 28(4), 268-270. http://dx.doi.org/10.1080/14786419.2013.838241 PMID: 24047498
Cho, N.; Valenciano, A.L.; Du, Y.; Clement, J.; Cassera, M.B.; Goetz, M.; Kingston, D.G.I. Antiplasmodial fla-vanones and a stilbene from Carpha glomerata. Bioorg. Med. Chem. Lett., 2018, 28(20), 3368-3371. http://dx.doi.org/10.1016/j.bmcl.2018.09.003 PMID: 30219526
Senadeera, S.P.D.; Robertson, L.P.; Duffy, S.; Wang, Y.; Avery, V.M.; Carroll, A.R. β-Triketone-monoterpene hy-brids from the flowers of the Australian tree Corymbia in-termedia. J. Nat. Prod., 2018, 81(11), 2455-2461. http://dx.doi.org/10.1021/acs.jnatprod.8b00494 PMID: 30398871
Fuentes, R.G.; Pearce, K.C.; Du, Y.; Rakotondrafara, A.; Valenciano, A.L.; Cassera, M.B.; Rasamison, V.E.; Craw-ford, T.D.; Kingston, D.G.I. Phloroglucinols from the roots of Garcinia dauphinensis and their antiproliferative and an-tiplasmodial activities. J. Nat. Prod., 2019, 82(3), 431-439. http://dx.doi.org/10.1021/acs.jnatprod.8b00379 PMID: 30354100
Rajachan, O.A.; Hongtanee, L.; Chalermsaen, K.; Kanok-medhakul, K.; Kanokmedhakul, S. Bioactive galloyl flavans from the stems of Helixanthera parasitica. J. Asian Nat. Prod. Res., 2020, 22(5), 405-412. http://dx.doi.org/10.1080/10286020.2019.1592165 PMID: 30945943
Makler, M.T.; Ries, J.M.; Williams, J.A.; Bancroft, J.E.; Piper, R.C.; Gibbins, B.L.; Hinrichs, D.J. Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. Am. J. Trop. Med. Hyg., 1993, 48(6), 739-741. http://dx.doi.org/10.4269/ajtmh.1993.48.739 PMID: 8333566
Marie, D.; Partensky, F.; Jacquet, S.; Vaulot, D. Enumera-tion and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR green I. Appl. Environ. Microbiol., 1997, 63(1), 186-193. http://dx.doi.org/10.1128/AEM.63.1.186-193.1997 PMID: 16535483
Peters, W.; Portus, J.H.; Robinson, B.L. The chemotherapy of rodent malaria, XXII. The value of drug-resistant strains of P. berghei in screening for blood schizontocidal activity. Ann. Trop. Med. Parasitol., 1975, 69(2), 155-171. http://dx.doi.org/10.1080/00034983.1975.11686997 PMID: 1098584
Aldulaimi, O.; Uche, F.I.; Hameed, H.; Mbye, H.; Ullah, I.; Drijfhout, F.; Claridge, T.D.W.; Horrocks, P.; Li, W.W. A characterization of the antimalarial activity of the bark of Cylicodiscus gabunensis harms. J. Ethnopharmacol., 2017, 198, 221-225. http://dx.doi.org/10.1016/j.jep.2017.01.014 PMID: 28089716
Tuenter, E.; Zarev, Y.; Matheeussen, A.; Elgorashi, E.; Pieters, L.; Foubert, K. Antiplasmodial prenylated flavonoids from stem bark of Erythrina latissima. Phytochem. Lett., 2019, 30, 169-172. http://dx.doi.org/10.1016/j.phytol.2019.02.001
Singh, S.V.; Manhas, A.; Singh, S.P.; Mishra, S.; Tiwari, N.; Kumar, P.; Shanker, K.; Srivastava, K.; Sashidhara, K.V.; Pal, A. A phenolic glycoside from Flacourtia indica induces heme mediated oxidative stress in Plasmodium fal-ciparum and attenuates malaria pathogenesis in mice. Phy-tomedicine, 2017, 30, 1-9. http://dx.doi.org/10.1016/j.phymed.2017.04.010 PMID: 28545664
De Souza, J.E.; do Nascimento, M.F.A.; Borsodi, M.P.G.; De Almeida, A.P.; Rossi-Bergmann, B.; de Oliveira, A.B.; Costa, S.S. Leaves from the tree Poincianella pluviosa as a renewable source of antiplasmodial compounds against chloroquine-resistant Plasmodium falciparum. J. Braz. Chem. Soc., 2018, 29(6), 1318-1327. http://dx.doi.org/10.21577/0103-5053.20170228
Akaberi, M.; Danton, O.; Tayarani-Najaran, Z.; Asili, J.; Iranshahi, M.; Emami, S.A.; Hamburger, M. HPLC-based activity profiling for antiprotozoal compounds in the en-demic Iranian medicinal plant Helichrysum oocephalum. J. Nat. Prod., 2019, 82(4), 958-969. http://dx.doi.org/10.1021/acs.jnatprod.8b01031 PMID: 30916554
Lopatriello, A.; Soré, H.; Habluetzel, A.; Parapini, S.; D’Alessandro, S.; Taramelli, D.; Taglialatela-Scafati, O. Identification of a potent and selective gametocytocidal an-timalarial agent from the stem barks of Lophira lanceolata. Bioorg. Chem., 2019, 93, 103321. http://dx.doi.org/10.1016/j.bioorg.2019.103321 PMID: 31585261
Lavoie, S.; Sweeney-Jones, A.M.; Mojib, N.; Dale, B.; Gagaring, K.; McNamara, C.W.; Quave, C.L.; Soapi, K.; Kubanek, J. Antibacterial oligomeric polyphenols from the green alga Cladophora socialis. J. Org. Chem., 2019, 84(9), 5035-5045. http://dx.doi.org/10.1021/acs.joc.8b03218 PMID: 30908914
Robertson, L.P.; Lucantoni, L.; Duffy, S.; Avery, V.M.; Carroll, A.R. Acrotrione: an oxidized xanthene from the roots of Acronychia pubescens. J. Nat. Prod., 2019, 82(4), 1019-1023. http://dx.doi.org/10.1021/acs.jnatprod.8b00956 PMID: 30865443
Boonyaketgoson, S.; Rukachaisirikul, V.; Phongpaichit, S.; Trisuwan, K. Deoxybenzoin and flavan derivatives from the twigs of Artocarpus lakoocha. Phytochem. Lett., 2019, 31, 96-100. http://dx.doi.org/10.1016/j.phytol.2019.03.020
Wisetsai, A.; Lekphrom, R.; Boonmak, J.; Youngme, S.; Schevenels, F.T. Spiroaxillarone A, a symmetric spiro-bisnaphthalene with an original skeleton from Cyanotis ax-illaris. Org. Lett., 2019, 21(20), 8344-8348. http://dx.doi.org/10.1021/acs.orglett.9b03122 PMID: 31565940
Salae, A.-W.; Chairerk, O.; Sukkoet, P.; Chairat, T.; Prawat, U.; Tuntiwachwuttikul, P.; Chalermglin, P.; Ruchi-rawat, S. Antiplasmodial dimeric chalcone derivatives from the roots of Uvaria siamensis. Phytochemistry, 2017, 135, 135-143. http://dx.doi.org/10.1016/j.phytochem.2016.12.009 PMID: 27989370
Lenta, N.; Ateba, J.T.; Chouna, J.R.; Aminake, M.N.; Nardella, F. Two 2,6-dioxabicyclo[3.3.1]nonan-3-ones from Phragmanthera capitata (Spreng.) Balle (Loranthaceae). Helv. Chim. Acta, 2015, 98(7), 945-952. http://dx.doi.org/10.1002/hlca.201400367
Zofou, D.; Tematio, E.L.; Ntie-Kang, F.; Tene, M.; Nge-menya, M.N.; Tane, P.; Titanji, V.P.K. New antimalarial hits from Dacryodes edulis (Burseraceae)--part I: isolation, in vitro activity, in silico “drug-likeness” and pharmacoki-netic profiles. PLoS One, 2013, 8(11), e79544. http://dx.doi.org/10.1371/journal.pone.0079544 PMID: 24282507
Deyou, T.; Gumula, I.; Pang, F.; Gruhonjic, A.; Mumo, M.; Holleran, J.; Duffy, S.; Fitzpatrick, P.A.; Heydenreich, M.; Landberg, G.; Derese, S.; Avery, V.; Rissanen, K.; Erdélyi, M.; Yenesew, A. Rotenoids, flavonoids, and chalcones from the root bark of Millettia usaramensis. J. Nat. Prod., 2015, 78(12), 2932-2939. http://dx.doi.org/10.1021/acs.jnatprod.5b00581 PMID: 26651537
Yodsing, N.; Lekphrom, R.; Sangsopha, W.; Aimi, T.; Boonlue, S. Secondary metabolites and their biological ac-tivity from Aspergillus aculeatus KKU-CT2. Curr. Micro-biol., 2018, 75(5), 513-518. http://dx.doi.org/10.1007/s00284-017-1411-y PMID: 29248948
Sadorn, K.; Saepua, S.; Boonyuen, N.; Boonruangprapa, T.; Rachtawee, P.; Pittayakhajonwut, P. Antimicrobial activity and cytotoxicity of xanthoquinodin analogs from the fungus Cytospora eugeniae BCC42696. Phytochemistry, 2018, 151, 99-109. http://dx.doi.org/10.1016/j.phytochem.2018.04.001 PMID: 29677644
Sadorn, K.; Saepua, S.; Boonyuen, N.; Komwijit, S.; Rachtawee, P.; Pittayakhajonwut, P. Phenolic glucosides and chromane analogs from the insect fungus Conoideocrella Krungchingensis BCC53666. Tetrahedron, 2019, 75(25), 3463-3471. http://dx.doi.org/10.1016/j.tet.2019.05.007
Rivera-Mondragón, A.; Tuenter, E.; Bijttebier, S.; Cos, P.; Apers, S.; Caballero-George, C.; Foubert, K.; Pieters, L. Two new antiplasmodial flavonolignans from the leaves of Cecropia obtusifolia. Phytochem. Lett., 2019, 31, 118-120. http://dx.doi.org/10.1016/j.phytol.2019.03.019
Namukobe, J.; Kiremire, B.T.; Byamukama, R.; Kasenene, J.M.; Akala, H.M.; Kamau, E.; Dumontet, V. Antiplasmo-dial compounds from the stem bark of Neoboutonia macro-calyx pax. J. Ethnopharmacol., 2015, 162(162), 317-322. http://dx.doi.org/10.1016/j.jep.2014.12.018 PMID: 25535086
Nitthithanasilp, S.; Intaraudom, C.; Boonyuen, N.; Suvan-nakad, R.; Pittayakhajonwut, P. Antimicrobial activity of cyathane derivatives from Cyathus subglobisporus BCC44381. Tetrahedron, 2018, 74(48), 6907-6916. http://dx.doi.org/10.1016/j.tet.2018.10.012
Nyaba, Z.N.; Murambiwa, P.; Opoku, A.R.; Mukaratirwa, S.; Shode, F.O.; Simelane, M.B.C. Isolation, characteriza-tion, and biological evaluation of a potent anti-malarial drimane sesquiterpene from Warburgia salutaris stem bark. Malar. J., 2018, 17(1), 296. http://dx.doi.org/10.1186/s12936-018-2439-6 PMID: 30111328
Klaiklay, S.; Rukachaisirikul, V.; Saithong, S.; Phongpaichit, S.; Sakayaroj, J. Trichothecenes from a soil-derived Trichoderma brevicompactum. J. Nat. Prod., 2019, 82(4), 687-693. http://dx.doi.org/10.1021/acs.jnatprod.8b00205 PMID: 30860372
Lakornwong, W.; Kanokmedhakul, K.; Soytong, K.; Unartngam, A.; Tontapha, S.; Amornkitbamrung, V.; Ka-nokmedhakul, S. Types A and D Trichothecene mycotoxins from the fungus Myrothecium roridum. Planta Med., 2019, 85(9-10), 774-780. http://dx.doi.org/10.1055/a-0895-5753 PMID: 31026874
Ju, E.; Latif, A.; Kong, C.-S.; Seo, Y.; Lee, Y.J.; Dalal, S.R.; Cassera, M.B.; Kingston, D.G.I. Antimalarial activity of the isolates from the marine sponge Hyrtios erectus against the chloroquine-resistant Dd2 strain of Plasmodium falciparum. Z. Natforsch. C J. Biosci., 2018, 73(9-10), 397-400. http://dx.doi.org/10.1515/znc-2018-0025 PMID: 29813035
Tabefam, M.; Farimani, M.M.; Danton, O.; Ramseyer, J.; Kaiser, M.; Ebrahimi, S.N.; Salehi, P.; Batooli, H.; Potterat, O.; Hamburger, M. Antiprotozoal diterpenes from Perov-skia abrotanoides. Planta Med., 2018, 84(12-13), 913-919. http://dx.doi.org/10.1055/a-0608-4946 PMID: 29698984
Farimani, M.M.; Khodaei, B.; Moradi, H.; Aliabadi, A.; Ebrahimi, S.N.; De Mieri, M.; Kaiser, M.; Hamburger, M. Phytochemical study of Salvia leriifolia roots: rearranged abietane diterpenoids with antiprotozoal activity. J. Nat. Prod., 2018, 81(6), 1384-1390. http://dx.doi.org/10.1021/acs.jnatprod.7b01019 PMID: 29896963
Khatri Chhetri, B.; Lavoie, S.; Sweeney-Jones, A.M.; Mo-jib, N.; Raghavan, V.; Gagaring, K.; Dale, B.; McNamara, C.W.; Soapi, K.; Quave, C.L.; Polavarapu, P.L.; Kubanek, J. Peyssonnosides A-B, Unusual diterpene glycosides with a sterically encumbered cyclopropane motif: structure elucidation using an integrated spectroscopic and computational workflow. J. Org. Chem., 2019, 84(13), 8531-8541. http://dx.doi.org/10.1021/acs.joc.9b00884 PMID: 31244158
Tabefam, M.; Moridi Farimani, M.; Danton, O.; Ramseyer, J.; Nejad Ebrahimi, S.; Neuburger, M.; Kaiser, M.; Salehi, P.; Potterat, O.; Hamburger, M. Antiprotozoal isoprenoids from Salvia hydrangea. J. Nat. Prod., 2018, 81(12), 2682-2691. http://dx.doi.org/10.1021/acs.jnatprod.8b00498 PMID: 30565934
Sangsopha, W.; Lekphrom, R.; Schevenels, F.T.; Kanok-medhakul, K.; Kanokmedhakul, S. Two new bioactive triterpenoids from the roots of Colubrina asiatica. Nat. Prod. Res., 2018, 34(4), 482-488. http://dx.doi.org/10.1080/14786419.2018.1489385 PMID: 30445837
Meesala, S.; Gurung, P.; Karmodiya, K.; Subrayan, P.; Watve, M.G. Isolation and structure elucidation of halyme-niaol, a new antimalarial sterol derivative from the red alga Halymenia floresii. J. Asian Nat. Prod. Res., 2018, 20(4), 391-398. http://dx.doi.org/10.1080/10286020.2017.1342636 PMID: 28662593
Wahba, A.E.; El-Sayed, A.K.A.; El-Falal, A.A.; Soliman, E.M. New Antimalarial lanostane triterpenes from a new isolate of Egyptian Ganoderma species. Med. Chem. Res., 2019, 28(12), 2246-2251. http://dx.doi.org/10.1007/s00044-019-02450-1
Murtihapsari,; Salam, S.; Kurnia, D. A new antiplasmodial sterol from Indonesian marine sponge Xestospongia sp. Nat. Prod. Res., 2019, 35(6), 937-944. http://dx.doi.org/10.1080/14786419.2019.1611815. PMID: 31210054
Muganza, D.M.; Fruth, B.; Nzunzu, J.L.; Tuenter, E.; Foubert, K.; Cos, P.; Maes, L.; Kanyanga, R.C.; Exarchou, V.; Apers, S.; Pieters, L. In vitro antiprotozoal activity and cytotoxicity of extracts and isolated constituents from Greenwayodendron suaveolens. J. Ethnopharmacol., 2016, 193, 510-516. http://dx.doi.org/10.1016/j.jep.2016.09.051 PMID: 27693770
Obbo, C.J.D.; Makanga, B.; Mulholland, D.A.; Coombes, P.H.; Brun, R. Antiprotozoal activity of Khaya anthotheca, (Welv.) C.D.C. a plant used by chimpanzees for self-medication. J. Ethnopharmacol., 2013, 147(1), 220-223. http://dx.doi.org/10.1016/j.jep.2013.03.007 PMID: 23501156
Sidjui, L.S.; Nganso, Y.O.D.; Toghueo, R.M.K.; Wakeu, B.N.K.; Dameue, J.T.; Mkounga, P.; Adhikari, A.; Lateef, M.; Folefoc, G. N.; Ali, M. S. Kostchyienones A and B, new antiplasmodial and cytotoxicity of limonoids from the roots of Pseudocedrela kotschyi (Schweinf) harms. Z. Naturforsch. C J. Biosci., 2018, 73(3-4)153-160. http://dx.doi.org/10.1515/znc-2017-0102 PMID: 28917086
Greve, H.L.; Kaiser, M.; Brun, R.; Schmidt, T.J. Terpenoids from the oleo-gum-resin of Boswellia serrata and their an-tiplasmodial effects in vitro. Planta Med., 2017, 83(14-15), 1214-1226. http://dx.doi.org/10.1055/s-0043-116943 PMID: 28738439
Yusuf, H.; Wijayanti, M.A.; Susidarti, R.A.; Asih, P.B.S.; Aceh, B. A new quassinoid of four isolated compounds from extract Eurycoma longifolia, jack roots and their in-vitro antimalarial activity. Int. J. Res. Pharm. Biomed. Sci., 2013, 4(3), 728-734.
Aratikatla, E.K.; Valkute, T.R.; Puri, S.K.; Srivastava, K.; Bhattacharya, A.K. Norepinephrine alkaloids as antiplas-modial agents: synthesis of syncarpamide and insight into the structure-activity relationships of its analogues as an-tiplasmodial agents. Eur. J. Med. Chem., 2017, 138, 1089-1105. http://dx.doi.org/10.1016/j.ejmech.2017.07.052 PMID: 28763644
Parra, L.L.L.; Bertonha, A.F.; Severo, I.R.M.; Aguiar, A.C.C.; de Souza, G.E.; Oliva, G.; Guido, R.V.C.; Grazzia, N.; Costa, T.R.; Miguel, D.C.; Gadelha, F.R.; Ferreira, A.G.; Hajdu, E.; Romo, D.; Berlinck, R.G.S. Isolation, derivative synthesis, and structure-activity relationships of An-tiparasitic bromopyrrole alkaloids from the marine sponge Tedania brasiliensis. J. Nat. Prod., 2018, 81(1), 188-202. http://dx.doi.org/10.1021/acs.jnatprod.7b00876 PMID: 29297684
Otogo N’Nang, E.; Bernadat, G.; Mouray, E.; Kumulungui, B.; Grellier, P.; Poupon, E.; Champy, P.; Beniddir, M.A. Theionbrunonines A and B: dimeric vobasine alkaloids tethered by a thioether bridge from Mostuea brunonis. Org. Lett., 2018, 20(20), 6596-6600. http://dx.doi.org/10.1021/acs.orglett.8b02961 PMID: 30303382
Kurimoto, S.-I.; Ohno, T.; Hokari, R.; Ishiyama, A.; Iwatsuki, M.; Ōmura, S.; Kobayashi, J.; Kubota, T. Cer-atinadins E and F, new bromotyrosine alkaloids from an okinawan marine sponge Pseudoceratina sp. Mar. Drugs, 2018, 16(12), 463. http://dx.doi.org/10.3390/md16120463 PMID: 30477099
Simoes-Pires, C.; Hostettmann, K.; Haouala, A.; Cuendet, M.; Falquet, J.; Graz, B.; Christen, P. Reverse pharmacology for developing an anti-malarial phytomedicine. The ex-ample of Argemone mexicana. Int. J. Parasitol. Drugs Drug Resist., 2014, 4(3), 338-346. http://dx.doi.org/10.1016/j.ijpddr.2014.07.001 PMID: 25516845
Nonaka, M.; Murata, Y.; Takano, R.; Han, Y.; Kabir, M.H.B.; Kato, K. Screening of a library of traditional Chi-nese medicines to identify anti-malarial compounds and ex-tracts. Malar. J., 2018, 17(1), 244. http://dx.doi.org/10.1186/s12936-018-2392-4 PMID: 29941026
Tang, Y.; Nugroho, A.E.; Hirasawa, Y.; Tougan, T.; Horii, T.; Hadi, A.H.A.; Morita, H. Leucophyllinines A and B, bi-sindole alkaloids from Leuconotis eugeniifolia. J. Nat. Med., 2019, 73(3), 533-540. http://dx.doi.org/10.1007/s11418-019-01297-5 PMID: 30911994
Zarev, Y.; Foubert, K.; Cos, P.; Maes, L.; Elgorashi, E.; Apers, S.; Ionkova, I.; Pieters, L. HPLC-DAD-SPE-NMR isolation of tetracyclic spiro-alkaloids with antiplasmodial activity from the seeds of Erythrina latissima. Nat. Prod. Res., 2019, 34(7), 1037-1040. http://dx.doi.org/10.1080/14786419.2018.1539976 PMID: 30602319
Tshitenge, D.T.; Feineis, D.; Mudogo, V.; Kaiser, M.; Brun, R.; Seo, E-J.; Efferth, T.; Bringmann, G. Mbandakamine-type naphthylisoquinoline dimers and related alkaloids from the Central African Liana Ancistrocladus ealaensis with an-tiparasitic and antileukemic activities. J. Nat. Prod., 2018, 81(4), 918-933. http://dx.doi.org/10.1021/acs.jnatprod.7b01041 PMID: 29560715
Chokchaisiri, R.; Chaichompoo, W.; Chalermglin, R.; Suksamrarn, A. Potent antiplasmodial alkaloids and flavonoids from Dasymaschalon acuminatum. Rec. Nat. Prod., 2015, 9(2), 243-246.
Goodman, C.D.; Austarheim, I.; Mollard, V.; Mikolo, B.; Malterud, K.E.; McFadden, G.I.; Wangensteen, H. Natural products from Zanthoxylum heitzii with potent activity against the malaria parasite. Malar. J., 2016, 15(481), 481. http://dx.doi.org/10.1186/s12936-016-1533-x PMID: 27649682
Mufusama, J.P.; Feineis, D.; Mudogo, V.; Kaiser, M.; Brun, R.; Bringmann, G. Antiprotozoal dimeric naphthylisoquino-lines, mbandakamines B3 and B4, and related 5,8′-coupled monomeric alkaloids, ikelacongolines A-D, from a congo-lese Ancistrocladus liana. RSC Advances, 2019, 9(21), 12034-12046. http://dx.doi.org/10.1039/C9RA01784D
Davis, R.A.; Duffy, S.; Fletcher, S.; Avery, V.M.; Quinn, R.J.; Thiaplakortones, A. Thiaplakortones A-D: antimalarial thiazine alkaloids from the Australian marine sponge Pla-kortis lita. J. Org. Chem., 2013, 78(19), 9608-9613. http://dx.doi.org/10.1021/jo400988y PMID: 24032556
Chan, S.T.S.; Nani, R.R.; Schauer, E.A.; Martin, G.E.; Wil-liamson, R.T.; Saurí, J.; Buevich, A.V.; Schafer, W.A.; Joyce, L.A.; Goey, A.K.L.; Figg, W.D.; Ransom, T.T.; Henrich, C.J.; McKee, T.C.; Moser, A.; MacDonald, S.A.; Khan, S.; McMahon, J.B.; Schnermann, M.J.; Gustafson, K.R. Characterization and synthesis of eudistidine C, a bio-active marine alkaloid with an intriguing molecular scaf-fold. J. Org. Chem., 2016, 81(22), 10631-10640. http://dx.doi.org/10.1021/acs.joc.6b02380 PMID: 27934476
Batista, R.; Santana, C.C.; Azevedo-Santos, A.V.; Suarez-Fontes, A.M.; Antunes Ferraz, J.L. de A.; Silva, L.A.M.; Vannier-Santos, M.A. In vivo antimalarial extracts and constituents of Prosopis juliflora (Fabaceae). J. Funct. Foods, 2018, 44, 74-78. http://dx.doi.org/10.1016/j.jff.2018.02.032
Du, Y.; Valenciano, A.L.; Dai, Y.; Zheng, Y.; Zhang, F.; Zhang, Y.; Clement, J.; Goetz, M.; Kingston, D.G.I.; Cas-sera, M.B. Anibamine and its analogues: potent antiplas-modial agents from Aniba citrifolia. J. Nat. Prod., 2020, 83(3), 569-577. http://dx.doi.org/10.1021/acs.jnatprod.9b00724 PMID: 31577436
Kanyanga, R.C.; Munduku, C.K.; Lumpu, S.N.; Ehata, M.T.; Bool-Miting, F.M.; Kabangu, O.K.; Maya, B.M.; Cos, P.; Maes, L.; Vlietinck, A.J. Isolation and structure elucidation of two antiprotozoal bisbenzylisoquinoline alkaloids from Triclisia gilletii stem bark. Phytochem. Lett., 2018, 28, 19-23. http://dx.doi.org/10.1016/j.phytol.2018.09.008
Gonring-Salarini, K.L.; Conti, R.; de Andrade, J.P.; Borges, B.J.P.; Aguiar, A.C.C.; de Souza, J.O.; Zanini, C.L.; Oliva, G.; Tenorio, J.C.; Ellena, J. In vitro antiplasmodial activities of alkaloids isolated from roots of Worsleya procera (Lem.) Traub (Amaryllidaceae). J. Braz. Chem. Soc., 2019, 30(8), 1624-1633. http://dx.doi.org/10.21577/0103-5053.20190061
Schulze, C.J.; Navarro, G.; Ebert, D.; DeRisi, J.; Linington, R.G.; Salinipostins, A. Salinipostins A-K, long-chain bicy-clic phosphotriesters as a potent and selective antimalarial chemotype. J. Org. Chem., 2015, 80(3), 1312-1320. http://dx.doi.org/10.1021/jo5024409 PMID: 25584395
Ibrahim, S.R.M.; Abdallah, H.M.; Elkhayat, E.S.; Al Mu-sayeib, N.M.; Asfour, H.Z.; Zayed, M.F.; Mohamed, G.A.; Ibrahim, S.R.M.; Abdallah, H.M.; Elkhayat, E.S. Fusaripep-tide A: new antifungal and anti-malarial cyclodepsipeptide from the endophytic fungus Fusarium sp. J. Asian Nat. Prod. Res., 2018, 20(1), 75-85. http://dx.doi.org/10.1080/10286020.2017.1320989 PMID: 28446036
Bürstner, N.; Roggo, S.; Ostermann, N.; Blank, J.; Delmas, C.; Freuler, F.; Gerhartz, B.; Hinniger, A.; Hoepfner, D.; Liechty, B.; Mihalic, M.; Murphy, J.; Pistorius, D.; Rott-mann, M.; Thomas, J.R.; Schirle, M.; Schmitt, E.K. Gift from nature: cyclomarin A kills Mycobacteria and malaria parasites by distinct modes of action. Chem. Bio. Chem., 2015, 16(17), 2433-2436. http://dx.doi.org/10.1002/cbic.201500472 PMID: 26472355
Iwasaki, A.; Tadenuma, T.; Sumimoto, S.; Shiota, I.; Matsubara, T.; Saito-Nakano, Y.; Nozaki, T.; Sato, T.; Suenaga, K. Hoshinoamides A and B, acyclic lipopeptides from the marine Cyanobacterium caldora penicillata. J. Nat. Prod., 2018, 81(11), 2545-2552. http://dx.doi.org/10.1021/acs.jnatprod.8b00643 PMID: 30387355
Shi, Y.M.; Richter, C.; Challinor, V.L.; Grün, P.; Girela Del Rio, A.; Kaiser, M.; Schüffler, A.; Piepenbring, M.; Schwalbe, H.; Bode, H.B. Georatusin, a specific antiparasit-ic polyketide-peptide hybrid from the fungus Geomyces au-ratus. Org. Lett., 2018, 20(6), 1563-1567. http://dx.doi.org/10.1021/acs.orglett.8b00293 PMID: 29474084
Ozaki, K.; Iwasaki, A.; Sezawa, D.; Fujimura, H.; Nozaki, T.; Saito-Nakano, Y.; Suenaga, K.; Teruya, T. Isolation and total synthesis of mabuniamide, a lipopeptide from an Okeania sp. marine Cyanobacterium. J. Nat. Prod., 2019, 82(10), 2907-2915. http://dx.doi.org/10.1021/acs.jnatprod.9b00749 PMID: 31549837
Hayashi, Y.; Fukasawa, W.; Hirose, T.; Iwatsuki, M.; Ho-kari, R.; Ishiyama, A.; Kanaida, M.; Nonaka, K.; Také, A.; Otoguro, K.; O Mura, S.; Shiomi, K.; Sunazuka, T. Kozu-peptins, antimalarial agents produced by Paracamarospori-um species: isolation, structural elucidation, total synthesis, and bioactivity. Org. Lett., 2019, 21(7), 2180-2184. http://dx.doi.org/10.1021/acs.orglett.9b00483 PMID: 30859827
Christenhusz, M.J.M.; Byng, J.W. The number of known plants species in the world and its annual increase. Phyto-taxa, 2016, 261(3), 201-217. http://dx.doi.org/10.11646/phytotaxa.261.3.1
Philippe, G.; Angenot, L.; De Mol, P.; Goffin, E.; Hayette, M.P.; Tits, M.; Frédérich, M. In vitro screening of some Strychnos species for antiplasmodial activity. J. Eth-nopharmacol., 2005, 97(3), 535-539. http://dx.doi.org/10.1016/j.jep.2004.12.011 PMID: 15740892
Jonville, M.C.; Kodja, H.; Humeau, L.; Fournel, J.; De Mol, P.; Cao, M.; Angenot, L.; Frédérich, M. Screening of medicinal plants from Reunion island for antimalarial and cy-totoxic activity. J. Ethnopharmacol., 2008, 120(3), 382-386. http://dx.doi.org/10.1016/j.jep.2008.09.005 PMID: 18848979
Bero, J.; Frédérich, M.; Quetin-Leclercq, J. Antimalarial compounds isolated from plants used in traditional medi-cine. J. Pharm. Pharmacol., 2009, 61(11), 1401-1433. http://dx.doi.org/10.1211/jpp.61.11.0001 PMID: 19903367
Convention on biological diversity United Nations. Nagoya protocol on access to genetic resources and the fair and eq-uitable sharing of benefits arising from their Utilization to the convention on biological diversity. 2011. Available at: https://www.cbd.int/abs/(Accessed date: May 24 2020).
David, B.; Grondin, A.; Schambel, P.; Vitorino, M.; Zeyer, D. Plant natural fragments, an innovative approach for drug discovery. Phytochem. Rev., 2019, 19, 1141-1156. http://dx.doi.org/10.1007/s11101-019-09612-4
Lovering, F.; Bikker, J.; Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem., 2009, 52(21), 6752-6756. http://dx.doi.org/10.1021/jm901241e PMID: 19827778
Wermuth, C.G.; Aldous, D.; Raboisson, P.; Rognan, D. The Practice of Medicinal Chemistry, 4th ed.; Academic Press: London, 2015. http://dx.doi.org/10.1016/C2012-0-03066-9
Caille, S.; Cui, S.; Faul, M.M.; Mennen, S.M.; Tedrow, J.S.; Walker, S.D. Molecular complexity as a driver for chemical process innovation in the pharmaceutical industry. J. Org. Chem., 2019, 84(8), 4583-4603. http://dx.doi.org/10.1021/acs.joc.9b00735 PMID: 30916557
Baell, J.B. Feeling nature’s PAINS: natural products, natural product drugs, and pan assay interference compounds (PAINS). J. Nat. Prod., 2016, 79(3), 616-628. http://dx.doi.org/10.1021/acs.jnatprod.5b00947 PMID: 26900761
Bisson, J.; McAlpine, J.B.; Friesen, J.B.; Chen, S.N.; Gra-ham, J.; Pauli, G.F. Can invalid bioactives undermine natural product-based drug discovery? J. Med. Chem., 2016, 59(5), 1671-1690. http://dx.doi.org/10.1021/acs.jmedchem.5b01009 PMID: 26505758
Capuzzi, S.J.; Muratov, E.N.; Tropsha, A. Phantom PAINS: problems with the utility of alerts for pan-assay INterference compoundS. J. Chem. Inf. Model., 2017, 57(3), 417-427. http://dx.doi.org/10.1021/acs.jcim.6b00465 PMID: 28165734
Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioas-says. J. Med. Chem., 2010, 53(7), 2719-2740. http://dx.doi.org/10.1021/jm901137j PMID: 20131845
Thorne, N.; Auld, D.S.; Inglese, J. Apparent activity in high-throughput screening: origins of compound-dependent assay interference. Curr. Opin. Chem. Biol., 2010, 14(3), 315-324. http://dx.doi.org/10.1016/j.cbpa.2010.03.020 PMID: 20417149
Singh, A.; Mukhtar, H.M.; Kaur, H.; Kaur, L. Investigation of antiplasmodial efficacy of lupeol and ursolic acid isolated from Ficus benjamina leaves extract. Nat. Prod. Res., 2020, 34(17), 2514-2517. http://dx.doi.org/10.1080/14786419.2018.1540476 PMID: 30600705
Bero, J.; Hérent, M.F.; Schmeda-Hirschmann, G.; Frédé-rich, M.; Quetin-Leclercq, J. In vivo antimalarial activity of Keetia leucantha twigs extracts and in vitro antiplasmodial effect of their constituents. J. Ethnopharmacol., 2013, 149(1), 176-183. http://dx.doi.org/10.1016/j.jep.2013.06.018 PMID: 23792125
Somsak, V.; Damkaew, A.; Onrak, P. Antimalarial activity of kaempferol and its combination with chloroquine in Plasmodium berghei infection in mice. J. Pathog., 2018, 2018, 3912090. http://dx.doi.org/10.1155/2018/3912090 PMID: 30631601