Al-Zeyara, S.A., Jarvis, B., Mackey, B.M., The inhibitory effect of natural microflora of food on growth of Listeria monocytogenes in enrichment broths. Int. J. Food Microbiol. 145 (2011), 98–105, 10.1016/j.ijfoodmicro.2010.11.036.
Amézquita, A., Brashears, M.M., Competitive inhibition of Listeria monocytogenes in ready-to-eat meat products by lactic acid bacteria. J. Food Protect. 65 (2002), 316–325, 10.4315/0362-028X-65.2.316.
Anang, D.M., Rusul, G., Bakar, J., Ling, F.H., Effects of lactic acid and lauricidin on the survival of Listeria monocytogenes, Salmonella enteritidis and Escherichia coli O157:H7 in chicken breast stored at 4°C. Food Contr. 18 (2007), 961–969, 10.1016/j.foodcont.2006.05.015.
Ariyapitipun, T., Mustapha, A., Clarke, A.D., Survival of Listeria monocytogenes Scott A on vacuum-packaged raw beef treated with polylactic acid, lactic acid, and nisin. J. Food Protect. 63 (2000), 131–136, 10.4315/0362-028X-63.1.131.
Arqués, J.L., Rodríguez, E., Gaya, P., Medina, M., Nuñez, M., Effect of combinations of high-pressure treatment and bacteriocin-producing lactic acid bacteria on the survival of Listeria monocytogenes in raw milk cheese. Int. Dairy J. 15 (2005), 893–900, 10.1016/j.idairyj.2004.07.020.
Beaufort, A., Bergis, H., Lardeux, A.L., Lombard, B., EURL Lm Technical Guidance Document for Conducting Shelf-Life Studies on Listeria Monocytogenes in Ready-To-Eat Foods. 2014.
Benner, R.A., Organisms of concern but not foodborne or confirmed foodborne: spoilage microorganisms. Encyclopedia of Food Safety, 2014, Elsevier, 245–250, 10.1016/B978-0-12-378612-8.00169-4.
Brandt, A.L., Castillo, A., Harris, K.B., Keeton, J.T., Hardin, M.D., Taylor, T.M., Inhibition of Listeria monocytogenes by food antimicrobials applied singly and in combination. J. Food Sci. 75 (2010), M557–M563, 10.1111/j.1750-3841.2010.01843.x.
Caplice, E., Food fermentations: role of microorganisms in food production and preservation. Int. J. Food Microbiol. 50 (1999), 131–149, 10.1016/S0168-1605(99)00082-3.
Coenye, T., Vandamme, P., Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ. Microbiol. 5 (2003), 719–729, 10.1046/j.1462-2920.2003.00471.x.
Cogan, T.M., Barbosa, M., Beuvier, E., Bianchi-Salvadori, B., Cocconcelli, P.S., Fernandes, I., Gomez, J., Gomez, R., Kalantzopoulos, G., Ledda, A., Medina, M., Rea, M.C., Rodriguez, E., Characterization of the lactic acid bacteria in artisanal dairy products. J. Dairy Res. 64 (1997), 409–421, 10.1017/S0022029997002185.
Commission Regulation, EC) N° 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Off. J. Eur. Union 338 (2005), 1–26.
Corless, C.E., Guiver, M., Borrow, R., Edwards-Jones, V., Kaczmarski, E.B., Fox, A.J., Contamination and sensitivity issues with a real-time universal 16S rRNA PCR. J. Clin. Microbiol. 38 (2000), 1747–1752, 10.1128/JCM.38.5.1747-1752.2000.
Delbes, C., Ali-Mandjee, L., Montel, M.-C., Monitoring bacterial communities in raw milk and cheese by culture-dependent and -independent 16S rRNA gene-based analyses. Appl. Environ. Microbiol. 73 (2007), 1882–1891, 10.1128/AEM.01716-06.
Delcenserie, V., Taminiau, B., Delhalle, L., Nezer, C., Doyen, P., Crevecoeur, S., Roussey, D., Korsak, N., Daube, G., Microbiota characterization of a Belgian protected designation of origin cheese, Herve cheese, using metagenomic analysis. J. Dairy Sci. 97 (2014), 6046–6056, 10.3168/jds.2014-8225.
Dortu, C., Thonart, P., Les bactériocines des bactéries lactiques: caractéristiques et intérêts pour la bioconservation des produits alimentaires/Bacteriocins from lactic acid bacteria: interest for food products biopreservation. Biotechnol. Agron. Soc. Environ., 13, 2009, 143.
ElBalat, N., AbdElAal, S., Ayoub, M., Elsayed, M., Enumeration and characterization of Aeromonas spp. isolated from milk and some dairy products in Sharkia governorate, Egypt. Alex. J. Vet. Sci., 40, 2014, 52, 10.5455/ajvs.49073.
El-Hajjaji, S., Gérard, A., De Laubier, J., Di Tanna, S., Lainé, A., Patz, V., Sindic, M., Assessment of growth and survival of Listeria monocytogenes in raw milk butter by durability tests. Int. J. Food Microbiol., 321, 2020, 108541, 10.1016/j.ijfoodmicro.2020.108541.
El-Hajjaji, S., Gérard, A., De Laubier, J., Di Tanna, S., Lainé, A., Patz, V., Sindic, M., Overview of the local production process of raw milk butter in Wallonia (Belgium). Int. J. Dairy Technol, 2019, 10.1111/1471-0307.12608.
European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC). The European Union one health 2018 zoonoses report. EFSA J., 17, 2019, 10.2903/j.efsa.2019.5926.
FASFC, Avis 11-2019 Potentiel de croissance de Listeria monocytogenes dans le beurre de ferme au lait cru. [WWW Document]. URL http://www.afsca.be/comitescientifique/avis/2019/_documents/Avis11-2019_SciCom2018-17_listerialaitcrubeurre_000.pdf, 2019.
Fernandez, P.S., George, S.M., Sills, C.C., Peck, M.W., Predictive model of the effect of CO2, pH, temperature and NaCl on the growth of Listeria monocytogenes. Int. J. Food Microbiol. 37 (1997), 37–45.
Fricker, M., Skånseng, B., Rudi, K., Stessl, B., Ehling-Schulz, M., Shift from farm to dairy tank milk microbiota revealed by a polyphasic approach is independent from geographical origin. Int. J. Food Microbiol. 145 (2011), S24–S30, 10.1016/j.ijfoodmicro.2010.08.025.
Garofalo, C., Bancalari, E., Milanović, V., Cardinali, F., Osimani, A., Sardaro, M.L.S., Bottari, B., Bernini, V., Aquilanti, L., Clementi, F., Neviani, E., Gatti, M., Study of the bacterial diversity of foods: PCR-DGGE versus LH-PCR. Int. J. Food Microbiol. 242 (2017), 24–36, 10.1016/j.ijfoodmicro.2016.11.008.
Gérard, A., El-Hajjaji, S., Van Coillie, E., Bentaïb, A., Daube, G., Sindic, M., Determination of the growth potential of Listeria monocytogenes in various types of Belgian artisanal cheeses by challenge tests. Food Microbiol., 92, 2020, 103582, 10.1016/j.fm.2020.103582.
Grahn, N., Olofsson, M., Ellnebo-Svedlund, K., Monstein, H.-J., Jonasson, J., Identification of mixed bacterial DNA contamination in broad-range PCR amplification of 16S rDNA V1 and V3 variable regions by pyrosequencing of cloned amplicons. FEMS Microbiol. Lett. 219 (2003), 87–91, 10.1016/S0378-1097(02)01190-4.
Guessas, B., Adjouj, F., Hadadji, M., Kihal, M., Isolation and identification of lactic acid bacteria from Dhan, a traditional butter and their major technological traits. World Appl. Sci. J. 17 (2012), 480–488.
Hayman, M.M., Kouassi, G.K., Anantheswaran, R.C., Floros, J.D., Knabel, S.J., Effect of water activity on inactivation of Listeria monocytogenes and lactate dehydrogenase during high pressure processing. Int. J. Food Microbiol. 124 (2008), 21–26, 10.1016/j.ijfoodmicro.2008.02.026.
Hébraud, M., Potier, P., Cold shock response and low temperature adaptation in psychrotrophic bacteria. J. Mol. Microbiol. Biotechnol. 1 (1999), 211–219.
Holliday, S.L., Adler, B.B., Beuchat, L.R., Viability of Salmonella, Escherichia coli O157: H7, and Listeria monocytogenes in butter, yellow fat spreads, and margarine as affected by temperature and physical abuse. Food Microbiol. 20 (2003), 159–168.
Jayashree, S., Pushpanathan, M., Rajendhran, J., Gunasekaran, P., Microbial diversity and phylogeny analysis of buttermilk, a fermented milk product, employing 16S rRNA-based pyrosequencing. Food Biotechnol. 27 (2013), 213–221, 10.1080/08905436.2013.811084.
Jofré, A., Garriga, M., Aymerich, T., Pérez Rodríguez, F., Valero, A., Carrasco, E., Bover Cid, S., Closing gaps for performing a risk assessment on Listeria monocytogenes in ready to eat (RTE) foods: activity 1, an extensive literature search and study selection with data extraction on L. monocytogenes in a wide range of RTE food. EFSA Support. Publ., 13, 2016, 10.2903/sp.efsa.2016.EN-1141.
Kämpfer, P., Rosselló-Mora, R., Hermansson, M., Persson, F., Huber, B., Falsen, E., Busse, H.-J., Undibacterium pigrum gen. nov., sp. nov., isolated from drinking water. Int. J. Syst. Evol. Microbiol. 57 (2007), 1510–1515, 10.1099/ijs.0.64785-0.
Kim, M., Wells, J.E., A Meta-analysis of bacterial diversity in the feces of cattle. Curr. Microbiol. 72 (2016), 145–151, 10.1007/s00284-015-0931-6.
Kim, S.-J., Moon, J.-Y., Weon, H.-Y., Hong, S.-B., Seok, S.-J., Kwon, S.-W., Undibacterium jejuense sp. nov. and Undibacterium seohonense sp. nov., isolated from soil and freshwater, respectively. Int. J. Syst. Evol. Microbiol. 64 (2014), 236–241, 10.1099/ijs.0.056846-0.
Koo, O.-K., Eggleton, M., O'Bryan, C.A., Crandall, P.G., Ricke, S.C., Antimicrobial activity of lactic acid bacteria against Listeria monocytogenes on frankfurters formulated with and without lactate/diacetate. Meat Sci. 92 (2012), 533–537, 10.1016/j.meatsci.2012.05.023.
Kuehn, J.S., Gorden, P.J., Munro, D., Rong, R., Dong, Q., Plummer, P.J., Wang, C., Phillips, G.J., Bacterial community profiling of milk samples as a means to understand culture-negative bovine clinical mastitis. PloS One, 8, 2013, e61959, 10.1371/journal.pone.0061959.
Lafarge, V., Ogier, J.-C., Girard, V., Maladen, V., Leveau, J.-Y., Gruss, A., Delacroix-Buchet, A., Raw cow milk bacterial population shifts attributable to refrigeration. Appl. Environ. Microbiol. 70 (2004), 5644–5650, 10.1128/AEM.70.9.5644-5650.2004.
Lin, C.-M., Moon, S.S., Doyle, M.P., McWatters, K.H., Inactivation of Escherichia coli O157:H7, Salmonella enterica serotype Enteritidis, and Listeria monocytogenes on lettuce by hydrogen peroxide and lactic acid and by hydrogen peroxide with mild heat. J. Food Protect. 65 (2002), 1215–1220, 10.4315/0362-028X-65.8.1215.
Liu, W., Zheng, Y., Kwok, L.-Y., Sun, Z., Zhang, J., Guo, Z., Hou, Q., Menhe, B., Zhang, H., High-throughput sequencing for the detection of the bacterial and fungal diversity in Mongolian naturally fermented cow's milk in Russia. BMC Microbiol., 15, 2015, 45, 10.1186/s12866-015-0385-9.
Michelon, D., Leclercq, A., Garric, G., Guillier, L., Beaufort, A., Bergis, H., Growth potential assessment of Listeria in milk fat products by challenge testing: growth potential of Listeria in milk fat products. J. Food Saf. 36 (2016), 260–270, 10.1111/jfs.12239.
Montel, M.-C., Buchin, S., Mallet, A., Delbes-Paus, C., Vuitton, D.A., Desmasures, N., Berthier, F., Traditional cheeses: rich and diverse microbiota with associated benefits. Int. J. Food Microbiol. 177 (2014), 136–154, 10.1016/j.ijfoodmicro.2014.02.019.
Moore, J.E., McILhatton, B., Shaw, A., Murphy, P.G., Elborn, J.S., Occurrence of Burkholderia cepacia in foods and waters: clinical implications for patients with cystic fibrosis. J. Food Protect. 64 (2001), 1076–1078, 10.4315/0362-028X-64.7.1076.
Murdock, C.A., Cleveland, J., Matthews, K.R., Chikindas, M.L., The synergistic effect of nisin and lactoferrin on the inhibition of Listeria monocytogenes and Escherichia coli O157:H7. Lett. Appl. Microbiol. 44 (2007), 255–261, 10.1111/j.1472-765X.2006.02076.x.
Nyhan, L., Begley, M., Mutel, A., Qu, Y., Johnson, N., Callanan, M., Predicting the combinatorial effects of water activity, pH and organic acids on Listeria growth in media and complex food matrices. Food Microbiol. 74 (2018), 75–85, 10.1016/j.fm.2018.03.002.
Oliveira, G.B. de, Favarin, L., Luchese, R.H., McIntosh, D., Psychrotrophic bacteria in milk: how much do we really know?. Braz. J. Microbiol. 46 (2015), 313–321, 10.1590/S1517-838246220130963.
Pérez-Rodríguez, F., Carrasco, E., Bover‐Cid, S., Jofré, A., Valero, A., Closing gaps for performing a risk assessment on Listeria monocytogenes in ready‐to‐eat (RTE) foods: activity 2, a quantitative risk characterization on L. monocytogenes in RTE foods; starting from the retail stage. EFSA Support, vol. 14, 2017, 10.2903/sp.efsa.2017.EN-1252 Publ.
Perin, L.M., Intereference of storage temperatures in the development of mesophilic, psychrotrophic, lipolytic and proteolytic microbiota of raw milk. Semina Ciências Agrárias 33 (2012), 333–342, 10.5433/1679-0359.2012v33n1p333.
Perin, L.M., Pereira, J.G., Bersot, L.S., Nero, L.A., The microbiology of raw milk. Raw Milk, 2019, Elsevier, 45–64, 10.1016/B978-0-12-810530-6.00003-1.
Phumudzo, T., Ronald, N., Khayalethu, N., Fhatuwani, M., Bacterial species identification getting easier. Afr. J. Biotechnol. 12 (2013), 5975–5982, 10.5897/AJB2013.12057.
Potapov, V., Ong, J.L., Examining sources of error in PCR by single-molecule sequencing. PloS One, 12, 2017, e0169774, 10.1371/journal.pone.0169774.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41 (2012), D590–D596, 10.1093/nar/gks1219.
Quigley, L., O'Sullivan, O., Stanton, C., Beresford, T.P., Ross, R.P., Fitzgerald, G.F., Cotter, P.D., The complex microbiota of raw milk. FEMS Microbiol. Rev. 37 (2013), 664–698, 10.1111/1574-6976.12030.
Raats, D., Offek, M., Minz, D., Halpern, M., Molecular analysis of bacterial communities in raw cow milk and the impact of refrigeration on its structure and dynamics. Food Microbiol. 28 (2011), 465–471, 10.1016/j.fm.2010.10.009.
Saad, N.M., Amin, W.F., Isolation of Burkholderia cepacia Complex from Raw Milk of Different Species of Dairy Animals in Assiut Governorate, vol. 58, 2012, 4.
Salazar, J.K., Carstens, C.K., Ramachandran, P., Shazer, A.G., Narula, S.S., Reed, E., Ottesen, A., Schill, K.M., Metagenomics of pasteurized and unpasteurized gouda cheese using targeted 16S rDNA sequencing. BMC Microbiol., 18, 2018, 10.1186/s12866-018-1323-4.
Schvartzman, M.S., Belessi, C., Butler, F., Skandamis, P.N., Jordan, K.N., Effect of pH and water activity on the growth limits of Listeria monocytogenes in a cheese matrix at two contamination levels. J. Food Protect. 74 (2011), 1805–1813.
Shokralla, S., Spall, J.L., Gibson, J.F., Hajibabaei, M., Next-generation sequencing technologies for environmental DNA research. Mol. Ecol. 21 (2012), 1794–1805, 10.1111/j.1365-294X.2012.05538.x.
Soomro, A.H., Tarik, M., Kiran, A., Role of lactic acid bacteria (LAB) in food preservation and human health – a review. Pakistan J. Nutr. 1 (2002), 20–24, 10.3923/pjn.2002.20.24.
Stiles, M.E., Holzapfel, W.H., Lactic acid bacteria of foods and their current taxonomy. Int. J. Food Microbiol. 36 (1997), 1–29, 10.1016/S0168-1605(96)01233-0.
Teixeira de Carvalho, A.A., Aparecida de Paula, R., Mantovani, H.C., Alencar de Moraes, C., Inhibition of Listeria monocytogenes by a lactic acid bacterium isolated from Italian salami. Food Microbiol. 23 (2006), 213–219, 10.1016/j.fm.2005.05.009.
Voysey, P.A., Anslow, P.A., Bridgwater, K.J., Lavender, B., Watson, L., The effects of butter characteristics on the growth of Listeria monocytogenes. Int. J. Dairy Technol. 62 (2009), 326–330, 10.1111/j.1471-0307.2009.00505.x.
Wang, C., Chang, T., Yang, H., Cui, M., Antibacterial mechanism of lactic acid on physiological and morphological properties of Salmonella Enteritidis, Escherichia coli and Listeria monocytogenes. Food Contr. 47 (2015), 231–236, 10.1016/j.foodcont.2014.06.034.
Widyastuti, Y., Rohmatussolihat, Febrisiantosa, A., The role of lactic acid bacteria in milk fermentation. Food Nutr. Sci., 2014, 435–442, 10.4236/fns.2014.54051 05.
Yu, J., Mo, L., Pan, L., Yao, C., Ren, D., An, X., Tsogtgerel, T., Zhang, H., Liu, W., Bacterial microbiota and metabolic character of traditional sour cream and butter in Buryatia, Russia. Front. Microbiol., 9, 2018, 10.3389/fmicb.2018.02496.
Yu, J., Wang, W.H., Menghe, B.L.G., Jiri, M.T., Wang, H.M., Liu, W.J., Bao, Q.H., Lu, Q., Zhang, J.C., Wang, F., Xu, H.Y., Sun, T.S., Zhang, H.P., Diversity of lactic acid bacteria associated with traditional fermented dairy products in Mongolia. J. Dairy Sci. 94 (2011), 3229–3241, 10.3168/jds.2010-3727.
Yue, J.C., Clayton, M.K., A similarity measure based on species proportions. Commun. Stat. Theor. Methods 34 (2005), 2123–2131, 10.1080/STA-200066418.