Influence of reduced levels or suppression of sodium nitrite on the outgrowth and toxinogenesis of psychrotrophic Clostridium botulinum Group II type B in cooked ham
Lebrun, Sarah; Van Nieuwenhuysen, Tom; Crevecoeur, Sébastienet al.
2020 • In International Journal of Food Microbiology, 334, p. 108853
[en] Outgrowth and toxinogenesis of Clostridium botulinum Group II (non-proteolytic) type B were studied in cooked ham prepared with different NaNO2 (ranging from 0 to 80 mg/kg) and sodium chloride (NaCl, ranging from 12 to 19 g/kg) incorporation rates. Cured ground pork batters were inoculated with a cocktail of 3 strains of C. botulinum Group II type B at 3.5 log10 CFU/g, portioned and samples of 50 g were vacuum packed then cooked and cooled based on thermal processing employed by the meat processing industry. These cooked ham model samples were stored under reasonably foreseeable conditions of use and storage i.e. for 14 days at 4 °C, followed by a cold chain break for 1 h at 20 °C then up to 33 days at 8 °C. Storage times and temperatures were used to mimic those commonly encountered along the supply chain. Enumeration of C. botulinum and detection of the botulinum neurotoxin type B (BoNT/B) were performed in triplicate at different storage times. Under these experimental conditions, incorporation rates of NaNO2≥30 mg/kg prevented the outgrowth and toxinogenesis of C. botulinum Group II type B in the cooked ham model, regardless of the NaCl concentrations tested. In contrast, total removal of nitrite allowed outgrowth and toxin production during storage of the processed meat product. Results showed that the maximum ingoing amount of nitrite (i.e. 150 mg/kg) that may be added according
to the EU legislation (Regulation (EC) No 1333/2008) can be reduced in cooked ham while still ensuring control of C. botulinum Group II type B. According to the multiple factors that could affect C. botulinum behavior in processing meat products, outgrowth and toxin production of C. botulinum should be evaluated on a case by case basis, depending on the recipe, manufacturing process, food matrix and storage conditions.
Research Center/Unit :
FARAH - Fundamental and Applied Research for Animals and Health - ULiège
Disciplines :
Food science Microbiology
Author, co-author :
Lebrun, Sarah ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Département de sciences des denrées alimentaires (DDA)
Crevecoeur, Sébastien ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Microbiologie des denrées alimentaires
Vanleyssem, Raphaël ; Université de Liège - ULiège > Département Sciences des Denrées alimentaires (DDA) & FARAH
Thimister, Jacqueline ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Département de sciences des denrées alimentaires (DDA)
Denayer, Sarah; Sciensano > Unité des toxines et des infections toxiques
Jeuge, Sabine; IFIP - Institut du Porc > Laboratoire de Microbiologie
Daube, Georges ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Microbiologie des denrées alimentaires
Clinquart, Antoine ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Technologie des denrées alimentaires
Fremaux, Bastien; IFIP - Institut du Porc > Laboratoire de Microbiologie
Language :
English
Title :
Influence of reduced levels or suppression of sodium nitrite on the outgrowth and toxinogenesis of psychrotrophic Clostridium botulinum Group II type B in cooked ham
Alahakoon, A.U., Jayasena, D.D., Ramachandra, S., Jo, C., Alternatives to nitrite in processed meat: up to date. Trends Food Sci. Technol. 45 (2015), 37–49, 10.1016/j.tifs.2015.05.008.
ANSES, Clostridium botulinum and neurotoxigenic Clostridia. URL https://www.anses.fr/en/system/files/MIC2010sa0234FiEN.pdf, 2010 (WWW Document). (Accessed 16 May 2019)
ANSES, Publication d'INCA3 (Étude individuelle nationale des consommations alimentaires 3). 2017, CERIN URL https://www.cerin.org/rapports/publication-dinca3-etude-individuelle-nationale-consommations-alimentaires-3/ (WWW Document). (Accessed 19 December 2019)
Bowen, V.G., Cerveny, J.G., Deibel, R.H., Effect of sodium ascorbate and sodium nitrite on toxin formation of Clostridium botulinum in wieners. Appl. Microbiol. 27 (1974), 605–606.
Brown, C.L., Hedrick, H.B., Bailey, M.E., Characteristics of cured ham as influenced by levels of sodium nitrite and sodium ascorbate. J. Food Sci. 39 (1974), 977–979, 10.1111/j.1365-2621.1974.tb07290.x.
Canada, H., Clostridium botulinum challenge testing of ready-to-eat foods. URL, aem https://www.canada.ca/en/health-canada/services/food-nutrition/legislation-guidelines/policies/clostridium-botulinum-challenge-testing-ready-foods-2010.html, 2010 (WWW Document). (Accessed 6 May 2020)
Cappuccio, F.P., Cardiovascular and other effects of salt consumption. Kidney Int. Suppl. 3 (2013), 312–315, 10.1038/kisup.2013.65.
Centers for Disease Control, Botulism in the United States, 18991973: Handbook for Epidemiologists, Clinicians, and Laboratory Workers. 1978, CDC.
Dahlenborg, M., Borch, E., Rådström, P., Development of a combined selection and enrichment PCR procedure for Clostridium botulinum Types B, E, and F and its use to determine prevalence in fecal samples from slaughtered pigs. Appl. Environ. Microbiol. 67 (2001), 4781–4788, 10.1128/aem.67.10.4781-4788.2001.
EFSA, Opinion of the scientific panel on biological hazards (BIOHAZ) related to the effects of nitrites/nitrates on the microbiological safety of meat products. EFSA J., 2, 2004, 14, 10.2903/j.efsa.2004.14.
EFSA, Statement on nitrites in meat products. EFSA J., 8, 2010, 1538, 10.2903/j.efsa.2010.1538.
European Centre for Disease Prevention and Control, Annual epidemiological report 2014 –food- and waterborne diseases and zoonoses. URL https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/food-waterborne-diseases-annual-epidemiological-report-2014.pdf, 2014 (WWW Document). (Accessed 15 May 2019)
European Centre for Disease Prevention and Control, Botulism - annual report for 2015. URL https://www.ecdc.europa.eu/sites/portal/files/documents/AER_for_2015-botulism.pdf, 2018 (WWW Document). (Accessed 15 May 2019)
European Union, Implementation of the EU salt reduction framework: results of member states survey. 2015.
FDA, Evaluation and definition of potentially hazardous foods. 2001.
Glass, K., Marshall, K., Chapter 27. Clostridium botulinum. Elsevier Enhanced Reader, 2013, 10.1016/B978-0-12-416041-5.00027-5 (WWW Document).
Govari, M., Pexara, A., Nitrates and nitrites in meat products. J. Hell. Vet. Med. Soc., 66(127), 2018, 10.12681/jhvms.15856.
Hammes, W.P., Metabolism of nitrate in fermented meats: the characteristic feature of a specific group of fermented foods. Food Microbiol. 29 (2012), 151–156, 10.1016/j.fm.2011.06.016.
Hashimoto, M., Nozoe, T., Nakaoka, H., Okura, R., Akiyoshi, S., Kaneko, K., Kussell, E., Wakamoto, Y., Noise-driven growth rate gain in clonal cellular populations. Proc. Natl. Acad. Sci., 113, 2016, 201519412, 10.1073/pnas.1519412113.
Honikel, K.-O., The use and control of nitrate and nitrite for the processing of meat products. Meat Sci. 78 (2008), 68–76, 10.1016/j.meatsci.2007.05.030.
Hyytiä-Trees, E., Skyttä, E., Mokkila, M., Kinnunen, A., Lindström, M., Lähteenmäki, L., Ahvenainen, R., Korkeala, H., Safety evaluation of sous vide-processed products with respect to nonproteolytic Clostridium botulinum by use of challenge studies and predictive microbiological models. Appl. Environ. Microbiol. 66 (2000), 223–229, 10.1128/aem.66.1.223-229.2000.
Izumi, K., Cassens, R.G., Greaser, M.L., Reaction of nitrite with ascorbic acid and its significant role in nitrite-cured food. Meat Sci. 26 (1989), 141–153, 10.1016/0309-1740(89)90037-5.
Keto-Timonen, R., LindströM, M., Puolanne, E., Niemistö, M., Korkeala, H., Inhibition of toxigenesis of Group II (nonproteolytic) Clostridium botulinum Type B in meat products by using a reduced level of nitrite. J. Food Prot. 75 (2012), 1346–1349, 10.4315/0362-028X.JFP-12-056.
Kong, Y.W., Baqar, S., Jerums, G., Ekinci, E.I., Sodium and its role in cardiovascular disease – the debate continues. Front. Endocrinol., 7, 2016, 10.3389/fendo.2016.00164.
Lee, S., Lee, H., Kim, S., Lee, J., Ha, J., Choi, Y., Oh, H., Choi, K.-H., Yoon, Y., Microbiological safety of processed meat products formulated with low nitrite concentration — a review. Asian-Australas. J. Anim. Sci. 31 (2018), 1073–1077, 10.5713/ajas.17.0675.
Majou, D., Christieans, S., Mechanisms of the bactericidal effects of nitrate and nitrite in cured meats. Meat Sci. 145 (2018), 273–284, 10.1016/j.meatsci.2018.06.013.
Mazuet, C., Le botulisme humain en France, 2013–2016/Human botulism in France, 2013-2016 9. 2017.
Merino, L., Darnerud, P.O., Toldrá, F., Ilbäck, N.-G., Time-dependent depletion of nitrite in pork/beef and chicken meat products and its effect on nitrite intake estimation. Food Addit. Contam. Part Chem. Anal. Control Expo. Risk Assess. 33 (2016), 186–192, 10.1080/19440049.2015.1125530.
Mortensen, A., Aguilar, F., Crebelli, R., Domenico, A.D., Dusemund, B., Frutos, M.J., Galtier, P., Gott, D., Gundert-Remy, U., Lambré, C., Leblanc, J.-C., Lindtner, O., Moldeus, P., Mosesso, P., Oskarsson, A., Parent-Massin, D., Stankovic, I., Waalkens-Berendsen, I., Woutersen, R.A., Wright, M., van den Brandt, P., Fortes, C., Merino, L., Toldrà, F., Arcella, D., Christodoulidou, A., Abrahantes, J.C., Barrucci, F., Garcia, A., Pizzo, F., Battacchi, D., Younes, M., Re-evaluation of potassium nitrite (E 249) and sodium nitrite (E 250) as food additives. EFSA J., 15, 2017, e04786, 10.2903/j.efsa.2017.4786.
Peck, M.W., Clostridium botulinum and the safety of minimally heated, chilled foods: an emerging issue?. J. Appl. Microbiol. 101 (2006), 556–570, 10.1111/j.1365-2672.2006.02987.x.
Peck, M.W., Goodburn, K.E., Betts, R.P., Stringer, S.C., Assessment of the potential for growth and neurotoxin formation by non-proteolytic Clostridium botulinum in short shelf-life commercial foods designed to be stored chilled. Trends Food Sci. Technol. 19 (2008), 207–216, 10.1016/j.tifs.2007.12.006.
Redondo-Solano, M., Valenzuela-Martinez, C., Cassada, D.A., Snow, D.D., Juneja, V.K., Burson, D.E., Thippareddi, H., Effect of meat ingredients (sodium nitrite and erythorbate) and processing (vacuum storage and packaging atmosphere) on germination and outgrowth of Clostridium perfringens spores in ham during abusive cooling. Food Microbiol. 35 (2013), 108–115, 10.1016/j.fm.2013.02.008.
Robinson, A., Gibson, A., Roberts, T., Factors controlling the growth of Clostridium botulinum types A and B in pasteurized, cured meats. V. Prediction of toxin production: non-linear effects of storage temperature and salt concentration. Int. J. Food Sci. Technol. 17 (2007), 727–744, 10.1111/j.1365-2621.1982.tb00233.x.
Sindelar, J., Milkowski, A., Sodium nitrite in processed meat and poultry meats: a review of curin and examining the risk and benefit of its use. White Pap. Ser. No 3, 2011, 1–14.
Sofos, J., Busta, F., Allen, C.E., Sodium nitrite and sorbic acid effects on Clostridium botulinum spore germination and total microbial growth in chicken frankfurter emulsions during temperature abuse. Appl. Environ. Microbiol. 37 (1979), 1103–1109.
Sofos, J., Busta, F., Allen, C.E., Botulism control by nitrite and sorbate in cured meats: a review. J. Food Prot. 42 (1979), 739–770, 10.4315/0362-028X-42.9.739.
Tomović, V.M., Jokanović, M.R., Petrović, L.S., Tomović, M.S., Tasić, T.A., Ikonić, P.M., Šumić, Z.M., Šojić, B.V., Škaljac, S.B., Šošo, M.M., Sensory, physical and chemical characteristics of cooked ham manufactured from rapidly chilled and earlier deboned M. semimembranosus. Meat Sci. 93 (2013), 46–52, 10.1016/j.meatsci.2012.07.015.
Tompkin, R.B., Christiansen, L.N., Shaparis, A.B., Iron and the antibotulinal efficacy of nitrite. Appl. Environ. Microbiol. 37 (1979), 351–353.
World Health Organization, Guideline: Sodium Intake for Adults and Children. 2012, World Health Organization.