[en] Resistance to β-lactam antibiotics in Gram-negatives producing metallo-β-lactamases (MBLs) represents a major medical threat and there is an extremely urgent need to develop clinically useful inhibitors. We previously reported the original binding mode of 5-substituted-4-amino/H-1,2,4-triazole-3-thione compounds in the catalytic site of an MBL. Moreover, we showed that, although moderately potent, they represented a promising basis for the development of broad-spectrum MBL inhibitors. Here, we synthesized and characterized a large number of 4-amino-1,2,4-triazole-3-thione-derived Schiff bases. Compared to the previous series, the presence of an aryl moiety at position 4 afforded an average 10-fold increase in potency. Among 90 synthetic compounds, more than half inhibited at least one of the six tested MBLs (L1, VIM-4, VIM-2, NDM-1, IMP-1, CphA) with Ki values in the microM to sub-microM range. Several were broad-spectrum inhibitors, also inhibiting the most clinically relevant VIM-2 and NDM-1. Active compounds generally contained halogenated, bicyclic aryl or phenolic moieties at position 5, and one substituent among o-benzoic, 2,4-dihydroxyphenyl, p-benzyloxyphenyl or 3-(m-benzoyl)-phenyl at position 4. The crystallographic structure of VIM-2 in complex with an inhibitor showed the expected binding between the triazole-thione moiety and the dinuclear centre and also revealed a network of interactions involving Phe61, Tyr67, Trp87 and the conserved Asn233. Microbiological analysis suggested that the compound antibacterial activity was limited by poor outer membrane penetration. This was supported by the ability of one compound to restore the susceptibility of an NDM-1-producing E. coli clinical strain toward several beta-lactams in the presence only of a sub-inhibitory concentration of colistin, a permeabilizing agent. Finally, some compounds were tested against the structurally similar di-zinc human glyoxalase II and found weaker inhibitors of the latter enzyme, thus showing a promising selectivity towards MBLs.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Nordmann, P., Naas, T., Poirel, L., Global spread of carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 17 (2011), 1791–1798.
Walsh, T.R., Toleman, M.A., The emergence of pan-resistant Gram-negative pathogens merits a rapid global political response. J. Antimicrob. Chemother. 67 (2012), 1–3.
Reygaert, W.C., An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 4 (2018), 482–501.
Cassini, A., Högberg, L.D., Plachouras, D., Quattrocchi, A., Hoxha, A., Simonsen, G.S., Colomb-Cotinat, M., Kretzschmar, M.E., Devleesschauwer, B., Cecchini, M., Ouakrim, D.A., Oliveira, T.C., Struelens, M.J., Suetens, C., Monnet, D.L., Burden of AMR Collaborative Group. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect. Dis. 19 (2019), 56–66.
Bush, K., Past and present perspectives on β-lactamases. Antimicrob. Agents Chemother., 62, 2018 e01076-18.
Palzkill, T., Metallo-β-lactamase structure and function. Ann. N. Y. Acad. Sci. 1277 (2013), 91–104.
Gajamer, V.R., Bhattacharjee, A., Paul, D., Deshamukhya, C., Singh, A.K., Pradhan, N., Tiwari, H.K., Escherichia coli encoding blaNDM-5 associated with community-acquired urinary tract infections with unusual MIC creep-like phenomenon against imipenem. J. Glob. Antimicrob. Resist. 14 (2018), 228–232.
Docquier, J.-D., Managani, S., An update on β-lactamase inhibitor discovery and development. Drug Resist. Updates 36 (2018), 13–29.
C. J. Burns, D. Daigle, B. Liu, D. McGarry, D. C. Pevear, R. E. Trout, β-Lactamase inhibitors. WO Patent WO 2014/089365 A1.
Krajnc, A., Lang, P.A., Panduwawala, T.D., Brem, J., Schofield, C.J., Will morphing boron-based inhibitors beat the β-lactamases?. Curr. Opin. Chem. Biol. 50 (2019), 101–110.
Krajnc, A., Brem, J., Hinchliffe, P., Calvopiña, K., Panduwawala, T.D., Lang, P.A., Kamps, J.J.A.G., Tyrrell, J.M., Widlake, E., Saward, B.G., Walsh, T.R., Spencer, J., Schofield, C.J., Bicyclic boronate VNRX-5133 inhibits metallo- and serine β-lactamases. J. Med. Chem. 62 (2019), 8544–8556.
Hamrick, J.C., Docquier, J.-D., Uehara, T., Myers, C.L., Six, D.A., Chatwin, C.L., John, K.J., Vernacchio, S.F., Cusick, S.M., Trout, R.E.L., Pozzi, C., De Luca, F., Benvenut, M., Mangani, S., Liu, B., Jackson, R.W., Moeck, G., Xerri, L., Burns, C.J., Pevear, D.C., Daigle, D.M., VNRX-5133 (Taniborbactam), a broad-spectrum inhibitor of serine- and metallo-β-lactamase, restores activity of cefepime in Enterobacterales and Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 64, 2020 e01963-19.
Liu, B., Trout, R.E.L., Chu, G.H., McGarry, D., Jackson, R.W., Hamrick, J.C., Daigle, D.M., Cusick, S.M., Pozzi, C., De Luca, F., Benvenuti, M., Mangani, S., Docquier, J.-D., Weis, W.J., Pevear, D.C., Xerri, L., Burns, C.J., Discovery of Taniborbactam (VNRX-5133): a broad spectrum serine- and metallo-β-lactamase inhibitor for carbapenem-resistant bacterial infections. J. Med. Chem. 63 (2020), 2789–2801.
Everett, M., Sprynski, N., Coelho, A., Castandet, J., Bayet, M., Bougnon, J., Lozano, C., Davies, D.T., Leiris, S., Zalacain, M., Morrissey, I., Magnet, S., Holden, K., Warn, P., De Luca, F., Docquier, J.-D., Lemonnier, M., Discovery of a novel metallo-β-lactamase inhibitor that potentiates meropenem activity against carbapenem-resistant Enterobacteriaceae. Antimicrob. Agents Chemother., 62, 2018 e00074-18.
Leiris, S., Coelho, A., Castandet, J., Bayet, M., Lozano, C., Bougnon, J., Bousquet, J., Everett, M., Lemonnier, M., Sprynski, N., Zalacain, M., Pallin, T.D., Cramp, M.C., Jennings, N., Raphy, G., Jones, M.W., Pattipati, R., Shankar, B., Sivasubrahmanyam, R., Soodhagani, A.K., Juventhala, R.R., Pottabathini, N., Pothukanuri, S., Benvenuti, M., Pozzi, C., Mangani, S., De Luca, F., Cerboni, G., Docquier, J.-D., Davies, D.T., SAR studies leading to the identification of a novel series of metallo-β-lactamase inhibitors for the treatment of carbapenem-resistant Enterobacteriaceae infections that display efficacy in an animal infection model. ACS Infect. Dis. 5 (2019), 131–140.
Liénard, B.M., Garau, G., Horsfall, L., Karsisiotis, A.I., Damblon, C., Lassaux, P., Papamicael, C., Roberts, G.C., Galleni, M., Dideberg, O., Frère, J.-M., Schofield, C.J., Structural basis for the broad-spectrum inhibition of metallo-β-lactamases by thiols. Org. Biomol. Chem. 6 (2008), 2282–2294.
Lassaux, P., Hamel, M., Gulea, M., Delbrück, H., Mercuri, P.S., Horsfall, L., Dehareng, D., Kupper, M., Frère, J.-M., Hoffmann, K., Galleni, M., Bebrone, C., Mercaptophosphonate compounds as broad-spectrum inhibitors of the metallo-β-lactamases. J. Med. Chem. 53 (2010), 4862–4876.
King, A.M., Reid-Yu, S.A., Wang, W., King, D.T., De Pascale, G., Strynadka, N.C., Walsh, T.R., Coombes, B.K., Wright, G.D., Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature 510 (2014), 503–506.
Bergstrom, A., Katko, A., Adkins, Z., Hill, J., Cheng, Z., Burnett, M., Yang, H., Aitha, M., Mehaffey, M.R., Brodbelt, J.S., Tehrani, K.H., Martin, N.I., Bonomo, R.A., Page, R.C., Tierney, D.L., Fast, W., Wright, G.D., Crowder, M.W., Probing the interaction of aspergillomarasmine A with metallo-β-lactamase NDM-1, VIM-2, and IMP-7. ACS Infect. Dis. 4 (2018), 135–145.
Matsuura, A., Okumura, H., Asakura, R., Ashizawa, N., Takahashi, M., Kobayashi, F., Ashikawa, N., Arai, K., Pharmacological profiles of aspergillomarasmines as endothelin converting enzyme inhibitors. Jpn. J. Pharmacol. 63 (1993), 187–193.
Brem, J., Cain, R., Cahill, S., McDonough, M.A., Clifton, I.J., Jiménez-Castellanos, J.C., Avison, M.B., Spencer, J., Fishwick, C.W., Schofield, C.J., Structural basis of metallo-β-lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic boronates. Nat. Commun., 7, 2016, 12406.
Hecker, S.J., Reddy, K.R., Lomovskaya, O., Griffith, D.C., Rubio-Aparicio, D., Nelson, K., Tsivkovski, R., Sun, D., Sabet, M., Tarazi, Z., Parkinson, J., Totrov, M., Boyer, S.H., Glinka, T.W., Pemberton, O.A., Chen, Y., Dudley, M.N., Discovery of cyclic boronic acid QPX7728, an ultra-broad-spectrum inhibitor of serine and metallo-β-lactamases. J. Med. Chem., 2020, 10.1201/acs.jmedchem.9b01976.
Olsen, L., Jost, S., Adolph, H.W., Pettersson, I., Hemmingsen, L., Jørgensen, F.S., New leads of metallo-β-lactamase inhibitors from structure-based pharmacophore design. Bioorg. Med. Chem. 14 (2006), 2627–2635.
Nauton, L., Kahn, R., Garau, G., Hernandez, J.-F., Dideberg, O., Structural insights into the design of inhibitors of the L1 metallo-β-lactamase from Stenotrophomonas maltophilia. J. Mol. Biol. 375 (2008), 257–269.
Sevaille, L., Gavara, L., Bebrone, C., De Luca, F., Nauton, L., Achard, M., Mercuri, P., Tanfoni, S., Borgianni, L., Guyon, C., Lonjon, P., Turan-Zitouni, G., Dzieciolowski, J., Becker, K., Bénard, L., Condon, C., Maillard, L., Martinez, J., Frère, J.-M., Dideberg, O., Galleni, M., Docquier, J.-D., Hernandez, J.-F., 1,2,4-Triazole-3-thione compounds as inhibitors of dizinc metallo-β-lactamase. ChemMedChem 12 (2017), 972–985.
Kwapien, K., Damergi, M., Nader, S., El Khoury, L., Hobaika, Z., Maroun, R.G., Piquemal, J.-P., Gavara, L., Berthomieu, D., Hernandez, J.-F., Gresh, N., Calibration of 1,2,4-triazole-3-thione, an original Zn-binding group of metallo-β-lactamase inhibitors. Validation of a polarizable MM/MD potential by quantum chemistry. J. Phys. Chem. B 121 (2017), 6295–6312.
Vella, P., Hussein, W.M., Leung, E.W., Clayton, D., Ollis, D.L., Mitić, N., Schenk, G., McGeary, R.P., The identification of new metallo-β-lactamase inhibitor leads from fragment-based screening. Bioorg. Med. Chem. Lett 21 (2011), 3282–3285.
Christopeit, T., Carlsen, T.J., Helland, R., Leiros, H.K., Discovery of novel inhibitor scaffolds against the metallo-β-lactamase VIM-2 by surface plasmon resonance (SPR) based fragment screening. J. Med. Chem. 58 (2015), 8671–8682.
Spyrakis, F., Celenza, G., Marcoccia, F., Santucci, M., Cross, S., Bellio, P., Cendron, L., Perilli, M., Tondi, D., Structure-based virtual screening for the discovery of novel inhibitors of New Delhi Metallo-β-lactamase-1. ACS Med. Chem. Lett. 9 (2018), 45–50.
Freire, E., Do enthalpy and entropy distinguish first class from best in class?. Drug Discov. Today 13 (2008), 869–874.
Ladbury, J.E., Calorimetry as a tool for understanding biomolecular interactions and an aid to drug design. Biochem. Soc. Trans. 38 (2010), 888–893.
Borgianni, L., Vandenameele, J., Matagne, A., Bini, L., Bonomo, R., Frère, J.-M., Rossolini, G.M., Docquier, J.-D., Mutational analysis of VIM-2 reveals an essential determinant for metallo-β-lactamase stability and folding. Antimicrob. Agents Chemother. 54 (2010), 3197–3204.
Mugnaini, C., Sannio, F., Brizzi, A., Del Prete, R., Simone, T., Ferraro, T., De Luca, F., Corelli, F., Docquier, J.-D., Screen of unfocused libraries identifies compounds with direct or synergistic antibacterial activity. ACS Med. Chem. Lett. 11 (2020), 899–905.
Studier, F.M., Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41 (2005), 207–234.
Laraki, N., Franceschini, N., Rossolini, G.M., Santucci, P., Meunier, C., de Pauw, E., Amicosante, G., Frère, J.-M., Galleni, M., Biochemical characterization of the Pseudomonas aeruginosa 101/1477 metallo-β-lactamase IMP-1 produced by Escherichia coli. Antimicrob. Agents Chemother. 43 (1999), 902–906.
Docquier, J.-D., Pantanella, F., Giuliani, F., Thaller, M.C., Amicosante, G., Galleni, M., Frère, J.-M., Bush, K., Rossolini, G.M., CAU-1, a subclass B3 metallo-β-lactamase of low substrate affinity encoded by an ortholog present in the Caulobacter crescentus chromosome. Antimicrob. Agents Chemother. 46 (2002), 1823–1830.
Docquier, J.-D., Lamotte-Brasseur, J., Galleni, M., Amicosante, G., Frère, J.M., Rossolini, G.M., On functional and structural heterogeneity of VIM-type metallo-β-lactamases. J. Antimicrob. Chemother. 51 (2003), 257–266.
Hernandez-Villadares, M., Galleni, M., Frère, J.-M., Felici, A., Perilli, M., Franceschini, N., Rossolini, G.M., Oratore, A., Amicosante, G., Overproduction and purification of the Aeromonas hydrophila CphA metallo-β-lactamse expressed in Escherichia coli. Microb. Drug Resist. 2 (1996), 253–256.
Bebrone, C., Anne, C., De Vriendt, K., Devreese, B., Rossolini, G.M., Van Beeumen, J., Frère, J.;-M., Galleni, M., Dramatic broadening of the substrate profile of the Aeromonas hydrophila CphA metallo-β-lactamase by site-directed mutagenesis. J. Biol. Chem. 280 (2005), 28195–28202.
Clinical Laboratory Standard Institute, Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard, Document M02-A12. 2015 Twelfth Edition, Wayne, PA, USA.
Yang, S., Clayton, S.R., Zechiedrich, E.L., Relative contributions of the AcrAB, MdfA and NorE efflux pumps to quinolone resistance in Escherichia coli. J. Antimicrob. Chemother. 51 (2003), 545–556.
Clinical Laboratory Standard Institute, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Document M07-A10. 2015 Twelfth Edition, Wayne, PA, USA.
Akoachere, M., Iozef, R., Rahlfs, S., Deponte, M., Mannervik, B., Creighton, D.J., Schirmer, H., Becker, K., Characterization of the glyoxalases of the malarial parasite Plasmodium falciparum and comparison with their human counterparts. Biol. Chem. 386 (2005), 41–52.
Docquier, J.-D., Benvenuti, M., Calderone, V., Stoczko, M., Menciassi, N., Rossolini, G.M., Mangani, S., High-resolution crystal structure of the subclass B3 metallo-β-lactamase BJP-1: rational basis for substrate specificity and interaction with sulfonamides. Antimicrob. Agents Chemother. 54 (2010), 4343–4351.
Pozzi, C., Di Pisa, F., De Luca, F., Benvenuti, M., Docquier, J.-D., Mangani, S., Atomic-resolution structure of a class C β-lactamase and its complex with avibactam. ChemMedChem 13 (2018), 1437–1446.
Murshudov, G.N., Shubak, P., Lebedev, A.A., Pannu, N.S., Steiner, R.A., Nicholls, R.A., Winn, M.D., Long, F., Vagin, A.A., REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67:Pt4 (2011), 355–367.
Wynn, M.D., Ballard, C.C., Cowtan, K.D., Dodson, E.J., Emsley, P., Evans, P.R., Keegan, R.M., Krissinel, E.B., Leslie, A.G., McCoy, A., McNicholas, S.J., Murshudov, G.N., Pannu, N.S., Potterton, E.A., Powell, H.R., Read, R.J., Vagin, A., Wilson, K.S., Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67:Pt4 (2011), 235–242.
Emsley, P., Lohkamp, B., Scott, W.G., Cowtan, K., Features and development of coot. Acta Crystallogr. D Biol. Crystallogr. 66:Pt4 (2010), 486–501.
Langer, G., Cohen, S.X., Lamzin, V.S., Perrakis, A., Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 3 (2008), 1171–1179.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.