Optimization and validation of a fast Supercritical Fluid Chromatography method for the quantitative determination of vitamin D3 and its related impurities.
SFC; Green analytical Chemistry; vitamin D3; method validation; accuracy profile; Design space
Abstract :
[en] In the uprising context of green analytical chemistry, Supercritical Fluid Chromatography (SFC) is often suggested as an alternative to Normal Phase Liquid Chromatography. Indeed, SFC provides fast, efficient and green separations. In this report, the quantitative performances of SFC were challenged on a real-life case study: the Quality Control (QC) of vitamin D3. A rapid and green SFC method was optimized thanks to the Design of Experiments–Design Space (DoE–DS) methodology. It provided robust and high quality separation of the compounds within a 2 min timeframe, using a gradient of ethanol as co-solvent of the carbon dioxide. The analytical method was fully validated according to the total error approach, demon- strating the compliance of the method to the specifications of U.S. Pharmacopeia (USP: 97.0–103.0%) and European Pharmacopeia (EP: 97.0–102.0%) for an interval of [50–150%] of the target concentration. In order to allow quantification of impurities using vitamin D3 as an external standard in SFC-UV, correction factors were determined and verified during method validation. Thus, accurate quantification of impu- rities was demonstrated at the specified levels (0.1 and 1.0% of the main compound) for a 70.0–130.0% dosing range. This work demonstrates the validity of an SFC method for the QC of vitamin D3 raw material and its application to real samples. Therefore, it supports the switch to a greener and faster separative technique as an alternative to NPLC in the pharmaceutical industry.
Research Center/Unit :
CIRM - Centre Interdisciplinaire de Recherche sur le Médicament - ULiège
Disciplines :
Pharmacy, pharmacology & toxicology Chemistry
Author, co-author :
Andri, Bertyl ; Université de Liège > Département de pharmacie > Chimie analytique
Lebrun, Pierre ; Université de Liège > Département de pharmacie > Chimie analytique
Dispas, Amandine ; Université de Liège > Département de pharmacie > Chimie analytique
Klinkenberg, Régis; Galephar research center M/F
Streel, Bruno; Galephar research center M/F
Ziemons, Eric ; Université de Liège > Département de pharmacie > Département de pharmacie
Hubert, Philippe ; Université de Liège > Département de pharmacie > Chimie analytique
Language :
English
Title :
Optimization and validation of a fast Supercritical Fluid Chromatography method for the quantitative determination of vitamin D3 and its related impurities.
Publication date :
2017
Journal title :
Journal of Chromatography. A
ISSN :
0021-9673
eISSN :
1873-3778
Publisher :
Elsevier Science, Amsterdam, Netherlands
Special issue title :
Selected paper from 31st International Symposium on Chromatography (ISC2016), 28 August - 1 September 2016, Cork, Ireland.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
[1] Tripkovic, L., Vitamin D 2vs. vitamin D 3: are they one and the same?. Nutr. Bull. 38 (2013), 243–248, 10.1111/nbu.12029.
[2] Lehmann, U., Hirche, F., Stangl, G.I., Hinz, K., Westphal, S., Dierkes, J., Bioavailability of vitamin D2 and D3 in healthy volunteers, a randomized placebo-controlled trial. J. Clin. Endocrinol. Metab. 98 (2013), 4339–4345, 10.1210/jc.2012-4287.
[3] Binkley, N., Gemar, D., Engelke, J., Gangnon, R., Ramamurthy, R., Krueger, D., et al. Evaluation of ergocalciferol or cholecalciferol dosing 1,600 IU daily or 50,000 IU monthly in older adults. J. Clin. Endocrinol. Metab. 96 (2011), 981–988, 10.1210/jc.2010-0015.
[4] Norman, A.W., From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am. J. Clin. Nutr. 88 (2008), 491S–499S.
[5] Gröber, U., Spitz, J., Reichrath, J., Kisters, K., Holick, M.F., Vitamin D: update 2013: from rickets prophylaxis to general preventive healthcare. Dermatoendocrinology 5 (2013), 331–347, 10.4161/derm.26738.
[6] DeLuca, H.F., Overview of general physiologic features and functions of vitamin D. Am. J. Clin. Nutr. 80 (2004), 1689S–1696S.
[7] Bikle, D., Nonclassic actions of vitamin D. J. Clin. Endocrinol. Metab. 94 (2009), 26–34, 10.1210/jc.2008-1454.
[8] Reid, I.R., Bolland, M.J., Grey, A., Effects of vitamin D supplements on bone mineral density: a systematic review and meta-analysis. Lancet 383 (2014), 146–155, 10.1016/S0140-6736(13)61647-5.
[9] Cui, X., Gooch, H., Groves, N.J., Sah, P., Burne, T.H., Eyles, D.W., et al. Vitamin D and the brain: key questions for future research. J. Steroid Biochem. Mol. Biol. 148 (2015), 305–309, 10.1016/j.jsbmb.2014.11.004.
[11] Wacker, M., Holick, M.F., Vitamin D-effects on skeletal and extraskeletal health and the need for supplementation. Nutrients 5 (2013), 111–148, 10.3390/nu5010111.
[12] Borges, M.C., Martini, L.A., Rogero, M.M., Current perspectives on vitamin D, immune system, and chronic diseases. Nutrition 27 (2011), 399–404, 10.1016/j.nut.2010.07.022.
[13] Glade, M.J., Vitamin D: health panacea or false prophet?. Nutrition 29 (2013), 37–41, 10.1016/j.nut.2012.05.010.
[14] Osmancevic, A., Sandström, K., Gillstedt, M., Landin-Wilhelmsen, K., Larkö, O., Wennberg Larkö, A.M., et al. Vitamin D production after UVB exposure – a comparison of exposed skin regions. J. Photochem. Photobiol. B Biol. 143 (2015), 38–43, 10.1016/j.jphotobiol.2014.12.026.
[15] Holick, M.F., Chen, T.C., Lu, Z., Sauter, E., Vitamin D and skin physiology: a D-lightful story. J. Bone Miner. Res. 22:Suppl. 2 (2007), V28–V33, 10.1359/jbmr.07s211.
[16] Cholecalciferol, United States Pharmacopeia 38, U.S. Pharmacopeial Convention, Rockville, MD, (2015): p. 2794.
[17] Cholecalciferol, European Pharmacopeia 8.0, European Pharmacopeia Commission, Strasbourg, France, (2014): pp. 1867–1869.
[18] Grand-Guillaume Perrenoud, A., Veuthey, J.L., Guillarme, D., The use of columns packed with sub-2 μm particles in supercritical fluid chromatography. Trends Anal. Chem. 63 (2014), 44–54, 10.1016/j.trac.2014.06.023.
[19] Sarazin, C., Sassiat, P.R., Vial, J., Thiébaut, D., Feasibility of ultra high performance supercritical neat carbon dioxide chromatography at conventional pressures. J. Sep. Sci. 34 (2011), 2773–2778, 10.1002/jssc.201100332.
[20] Desfontaine, V., Guillarme, D., Francotte, E., Novakova, L., Supercritical fluid chromatography in pharmaceutical analysis. J. Pharm. Biomed. Anal. 113 (2015), 56–71, 10.1016/j.jpba.2015.03.007.
[21] Marley, A., Connolly, D., Determination of (R)-timolol in (S)-timolol maleate active pharmaceutical ingredient: validation of a new supercritical fluid chromatography method with an established normal phase liquid chromatography method. J. Chromatogr. A 1325 (2014), 213–220, 10.1016/j.chroma.2013.12.011.
[22] Welch, C.J., Wu, N., Biba, M., Hartman, R., Brkovic, T., Gong, X., et al. Greening analytical chromatography. Trends Anal. Chem. 29 (2010), 667–680, 10.1016/j.trac.2010.03.008.
[24] Lesellier, E., West, C., The many faces of packed column supercritical fluid chromatography – a critical review. J. Chromatogr. A 1382 (2015), 2–46, 10.1016/j.chroma.2014.12.083.
[25] Guiochon, G., Tarafder, A., Fundamental challenges and opportunities for preparative supercritical fluid chromatography. J. Chromatogr. A 1218 (2011), 1037–1114, 10.1016/j.chroma.2010.12.047.
[26] Andri, B., Dispas, A., Marini, R.D., Hubert, P., Overview of the analytical lifecycle of supercritical fluid chromatography methods. Am. J. Anal. Chem. 07 (2016), 75–91, 10.4236/ajac.2016.71008.
[27] Jumaah, F., Larsson, S., Essén, S., Cunico, L.P., Holm, C., Turner, C., et al. A rapid method for the separation of vitamin D and its metabolites by ultra-high performance supercritical fluid chromatography-mass spectrometry. J. Chromatogr. A 1440 (2016), 191–200, 10.1016/j.chroma.2016.02.043.
[28] Pilařová, V., Gottvald, T., Svoboda, P., Novák, O., Benešová, K., Běláková, S., et al. Development and optimization of ultra-high performance supercritical fluid chromatography mass spectrometry method for high-throughput determination of tocopherols and tocotrienols in human serum. Anal. Chim. Acta 934 (2016), 252–265, 10.1016/j.aca.2016.06.008.
[29] Méjean, M., Brunelle, A., Touboul, D., Quantification of tocopherols and tocotrienols in soybean oil by supercritical-fluid chromatography coupled to high-resolution mass spectrometry. Anal. Bioanal. Chem. 407 (2015), 5133–5142, 10.1007/s00216-015-8604-7.
[30] Méjean, M., Vollmer, M., Brunelle, A., Touboul, D., Quantification of retinoid compounds by supercritical fluid chromatography coupled to ultraviolet diode array detection. Chromatographia 76 (2013), 1097–1105, 10.1007/s10337-013-2508-5.
[31] Vinayak, A.K., Lateef, S.S., Transfer of USP Cholecalciferol Normal-Phase HPLC Method to SFC- Application Note. 2012, Agilent Technologies Inc http://www.agilent.com/cs/library/applications/5991-1456EN.pdf (Accessed 11 January 2017).
[32] Esser, D., Method Development for Rapid SFC Analysis of Vitamin D- Application Note. 2015, YMC corp. LTD. ( http://ymc.de/files/images/News/September%202015/YMC_Alcyon%20SFC%20-%20Rapid%20SFC%20Analysis%20of%20Vitamin%20D3%20and%20Related%20Compounds.pdf (Accessed 11 January 2017).
[33] Box, G., Hunter, J.S., Hunter, W.G., Statistics for Experimenters: Design, Innovation, and Discovery. 2005, Wiley (ISBN: 978-0-471-71813-0).
[35] Myers, R.H., Montgomery, D.C., Anderson-Cook, C.M., Response Surface Methodology: Process and Product Optimization Using Designed Experiments. 2009.
[37] Peterson, J.J., A bayesian approach to the ICH Q8 definition of design space. J. Biopharm. Stat. 18 (2008), 959–975, 10.1080/10543400802278197.
[38] Lebrun, P., Govaerts, B., Debrus, B., Ceccato, A., Caliaro, G., Hubert, P., et al. Development of a new predictive modelling technique to find with confidence equivalence zone and design space of chromatographic analytical methods. Chemometr. Intell. Lab. Syst. 91 (2008), 4–16, 10.1016/j.chemolab.2007.05.010.
[39] Borman, P., Chatfield, M., Nethercote, P., Thompson, D., Truman, K., The application of quality by design to analytical methods. Pharm. Technol. 31 (2007), 142–152.
[40] Nethercote, P., Ermer, J., Quality by design for analytical methods: implications for method validation and transfer. Pharm. Technol. 36 (2012), 74–79.
[41] U.S. Departement of Health and Human Services, Food and Drug Admnistration, Pharmaceutical Quality for the 21 st Century A Risk Based Approach Progress Report, Rockville, MD, USA, (2007).
[42] Lionberger, R.A., Lee, S.L., Lee, L., Raw, A., Yu, L.X., Quality by design: concepts for ANDAs. AAPS J. 10 (2008), 268–276, 10.1208/s12248-008-9026-7.
[43] Hubert, P., Nguyen-Huu, J.J., Boulanger, B., Chapuzet, E., Chiap, P., Cohen, N., et al. Harmonization of strategies for the validation of quantitative analytical procedures: aSFSTP proposal – part I. J. Pharm. Biomed. Anal. 36 (2004), 579–586, 10.1016/j.jpba.2004.07.027.
[44] Hubert, P., Nguyen-Huu, J.J., Boulanger, B., Chapuzet, E., Chiap, P., Cohen, N., et al. Harmonization of strategies for the validation of quantitative analytical procedures. A SFSTP proposal – part II. J. Pharm. Biomed. Anal. 45 (2007), 70–81, 10.1016/j.jpba.2007.06.013.
[45] Hubert, P., Nguyen-Huu, J.J., Boulanger, B., Chapuzet, E., Cohen, N., Compagnon, P.A., et al. Harmonization of strategies for the validation of quantitative analytical procedures. A SFSTP proposal-part III. J. Pharm. Biomed. Anal. 45 (2007), 82–96, 10.1016/j.jpba.2007.06.032.
[46] Hubert, P., Nguyen-Huu, J.J., Boulanger, B., Chapuzet, E., Cohen, N., Compagnon, P.A., et al. Harmonization of strategies for the validation of quantitative analytical procedures: a SFSTP proposal. Part IV. Examples of application. J. Pharm. Biomed. Anal. 48 (2008), 760–771, 10.1016/j.jpba.2008.07.018.
[47] Havinga, E., Vitamin D, example and challenge. Experientia 29 (1973), 1181–1193.
[48] Lebrun, P., Boulanger, B., Debrus, B., Lambert, P., Hubert, P., A Bayesian design space for analytical methods based on multivariate models and predictions. J. Biopharm. Stat. 23 (2013), 1330–1351, 10.1080/10543406.2013.834922.
[49] Dispas, A., Lebrun, P., Sassiat, P.R., Ziemons, E., Thiébaut, D., Vial, J., et al. Innovative green supercritical fluid chromatography development for the determination of polar compounds. J. Chromatogr. A 1256 (2012), 253–260, 10.1016/j.chroma.2012.07.043.
[50] Dispas, A., Lebrun, P., Andri, B., Rozet, E., Hubert, P., Robust method optimization strategy-a useful tool for method transfer: the case of SFC. J. Pharm. Biomed. Anal. 88 (2014), 519–524, 10.1016/j.jpba.2013.09.030.
[51] Debrus, B., Lebrun, P., Mbinze, J.K., Lecomte, F., Ceccato, A., Caliaro, G., et al. Innovative high-performance liquid chromatography method development for the screening of 19 antimalarial drugs based on a generic approach, using design of experiments, independent component analysis and design space. J. Chromatogr. A 1218 (2011), 5205–5215, 10.1016/j.chroma.2011.05.102.
[52] Guideline, I., Pharmaceutical Development ICHHTG Q8 (R2). 2009.
[53] Havinga, E., Schlatmann, J.L.M.A., Remarks on the specificities of the photochemical and thermal transformations in the vitamin D field. Tetrahedron 16 (1961), 146–152, 10.1016/0040-4020(61)80065-3.
[54] Arruda, B.C., Sension, R.J., Ultrafast polyene dynamics: the ring opening of 1 3-cyclohexadiene derivatives. Phys. Chem. Chem. Phys. 16 (2014), 4439–4517, 10.1039/c3cp54767a.
[55] Inomata, H., Yagi, Y., Saito, M., Saito, S., Density dependence of the molar absorption coefficient-application of the beer-lambert law to supercritical C02-naphthalene mixture. J. Supercrit. Fluid 6 (1993), 237–240, 10.1016/0896-8446(93)90033-T.
[56] Carrott, M.J., Wai, C.M., UV-visible spectroscopic measurement of solubilities in supercritical CO(2) using high-pressure fiber-optic cells. Anal. Chem. 70 (1998), 2421–2425, 10.1021/ac971077h.
[57] Rice, J.K., Niemeyer, E.D., Bright, F.V., Evidence for density-dependent changes in solute molar absorptivities in supercritical CO2: impact on solubility determination practices. Anal. Chem. 67 (1995), 4354–4357, 10.1021/ac00119a024.
[58] AFNOR, V03-110 Protocol of characterization for the validation of a quantitative method of analysis by construction of an accuracy profile, 2010.
[59] Rozet, E., Ceccato, A., Hubert, C., Ziemons, E., Oprean, R., Rudaz, S., et al. Analysis of recent pharmaceutical regulatory documents on analytical method validation. J. Chromatogr. A 1158 (2007), 111–125, 10.1016/j.chroma.2007.03.111.
[60] ICH, Q2(R1) Guideline, Validation of Analytical Procedures: Text and Methodology. 2005.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.