Efficiency of a Lactobacillus plantarum-xylanase combination on growth performances, microflora populations, and nutrient digestibilities of broilers infected with Salmonella Typhimurium
[en] Three experiments were performed to assess the ability of a Lactobacillus plantarum probiotic combined with a xylanase to reduce the effects of S. typhimurium infection in broiler chickens from 1- to 30- or 42-d-old. Chicks were challenged at 3-d-old with 108 or 105 cfu S. typhimurium/chick. Four diets were studied: a wheat-based diet (C+) supplemented with 0.1 g/kg xylanase (E), or 106 cfu/g or L. plantarum (P), or both (PE). Uninfected chicks fed the C diet were used as negative control (C-). Six or 8 chicks were housed per cage with 9 cages/treatment. Growth performance and feed conversion ratio (FCR) were recorded weekly. In experiment 1, bacterial enumeration in caeca was achieved using the fluorescent in situ hybridization technique. Salmonella enumeration was realized in excreta by microbiological cultures (Exp. 2 and 3). Nutrient digestibilities and AMEn were determined in experiment 3 from d 35 to d 39. Infection with S. typhimurium led to a significant decrease in the daily weight gain (DWG) by 23.6% to 32.8%, whereas FCR was increased by 1.0% to 19.7%. Chickens fed the PE diet showed significantly improved performance in comparison with C+ birds (DWG: +12.5% in Exp. 1; FCR: -2.1-8.6%), and in comparison with the P and E treatments (DWG: +6.3-8.3% in Exp. 1; FCR: -2.7-6.4%). In experiment 3, the FCR was significantly improved by 3% with the PE diet in comparison with C- chickens. The PE combination tended to restore a microflora similar to that of uninfected broilers, whereas the P and E diets had less of an effect on the profile of bacterial communities. At slaughter age, Salmonella contamination was reduced by 2.00 and 1.85 log cfu for the E and PE treatment, respectively. The PE diet significantly reduced the crude fat digestibility by 9.2%, in comparison with the C+ chickens. These results suggest that combination between L. plantarum and a xylanase as feed additive could be effective for reduction of detrimental effect following S. typhimurium infection of broilers.
Disciplines :
Animal production & animal husbandry Veterinary medicine & animal health
Welling, Gjalt W.; University Medical Center Groningen > Department of Medical Microbiology
Thonart, Philippe ; Université de Liège - ULiège > Gembloux Agro-Bio Tech > Gembloux Agro-Bio Tech - Biochimie et microbiologie industrielles
Thewis, André ; Université de Liège - ULiège > Gembloux Agro-Bio Tech > Gembloux Agro-Bio Tech
Language :
English
Title :
Efficiency of a Lactobacillus plantarum-xylanase combination on growth performances, microflora populations, and nutrient digestibilities of broilers infected with Salmonella Typhimurium
Publication date :
August 2009
Journal title :
Poultry Science
ISSN :
0032-5791
eISSN :
1525-3171
Publisher :
Poultry Science Association, Champaign, United States - Illinois
Volume :
88
Issue :
8
Pages :
1643-1654
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Recherche d'un probiotique travaillant en synergie avec une hémicellulase en alimentation aviaire
Funders :
DGTRE - Région wallonne. Direction générale des Technologies, de la Recherche et de l'Énergie
Amann, R. I., B. J. Binder, R. J. Olson, S. W. Chisholm, R. Devereux, and D. A. Stahl. 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56:1919-1925.
Anonymous. 2002. Microbiology of food and animal feeding stuffs- Horizontal method for the detection of Salmonella spp. EN ISO 6579:2002. International Organization for Standardization, Geneva, Switzerland.
AOAC. 1990. Official Methods of Analysis. 15th ed. AOAC Int., Arlington, VA.
Belenguer, A., S. H. Duncan, A. G. Calder, G. Hotrop, P. Louis, G. E. Lobley, and H. J. Flint. 2006. Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate- producing anaerobes from the human gut. Appl. Environ. Microbiol. 72:3593-3599.
Bomba, A., Z. Jonecová, S. Gancarčíková, and R. Nemcová. 2006. The gastrointestinal microbiota of farm animals. Pages 379-397 in Gastrointestinal Microbiology. A. C. Ouwehand and E. E. Vaughan, ed. Taylor & Francis LLC, New York, NY.
Bourdillon, A., B. Carré, L. Conan, M. Francesch, M. Fuentes, G. Huyghebaert, W. M. Janssen, B. Leclercq, M. Lessire, J. McNab, M. Rigoni, and J. Wiseman. 1990. European reference method of in vivo determination of metabolisable energy in poultry: Repro- ductibility, effect of age, comparison with predicted values. Br. Poult. Sci. 31:567-576.
Choct, M., A. Kocher, D. L. E. Waters, D. Pettersson, and G. Ross. 2004. A comparison of three xylanases on the nutritive value of two wheats for broiler chickens. Br. J. Nutr. 92:53-61.
Courtin, C. M., K. Swennen, W. F. Broekaert, Q. Swennen, J. Buyse, E. Decuypere, C. W. Michiels, B. De Ketelaere, and J. A. Delcour. 2008. Effects of dietary inclusion of xylooligosaccha- rides, arabinoxylooligosaccharides and soluble arabinoxylan on the microbial composition of cecal contents of chickens. J. Sci. Food Agric. 88:2517-2522.
Dagnelie, P. 1996. Théories et Méthodes Statistiques. Vol. 2. Presses Agronomiques de Gembloux, Gembloux, Belgium.
Dänicke, S., W. Vahjen, O. Simon, and H. Jeroch. 1999. Effects of dietary fat type and xylanase supplementation to rye-based broil- er diets on selected bacterial groups adhering to the intestinal epithelium, on transit time of feed, and on nutrient digestibility. Poult. Sci. 78:1292-1299.
Desmidt, M., R. Ducatelle, and F. Haesebrouck. 1998. Immunohistochemical observations in the caeca of chickens infected with Salmonella Enteritidis phage type four. Poult. Sci. 77:73-74.
EFSA. 2007. The community summary report on trends and sources of zoonoses, zoonotic agents, antimicrobial resistance and foodborne outbreaks in the European Union in 2005. WebMD. http://www.efsa.europa.eu/cs/BlobServer/DocumentSet/Zoonoses_Report_EU_e n_2005,3.pdf?ssbinary=true Accessed Sep. 2008.
Engberg, R. M., M. S. Hedemann, S. Steenfeldt, and B. B. Jensen. 2004. Influence of whole wheat and xylanase on broiler performance and microbial composition and activity in the digestive tract. Poult. Sci. 83:925-938.
Fayol-Messaoudi, D., C. N. Berger, M.-H. Coconnier-Polter, V. Liévin-Le Moal, and A. L. Servin. 2005. pH-, lactic acid-, and non-lactic acid-decagedent activities of probiotic lactobacilli against Salmonella enterica serovar Typhimurium. Appl. Envi- ron. Microbiol. 71:6008-6013.
Finlay, B. B., and P. Cossart. 1997. Exploitation of mammalian host cell functions by bacterial pathogens. Science 276:718-725.
Franks, A. H., H. J. Harmsen, G. C. Raangs, G. J. Jansen, F. Schut, and G. W. Welling. 1998. Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl. Environ. Microbiol. 64:3336-3345.
Fuller, R. 1984. Microbial activity in the alimentary tract of birds. Proc. Nutr. Soc. 43:55-61.
García, V., P. Catalá, J. Madrid, J. Orengo, and F. Hernández. 2008. Polysaccharidase preparations added to a wheat-based diet: Effects on performance and digestive parameters of broiler chickens held at three different locations. Br. Poult. Sci. 49:164-175.
Gupta, S., N. Jindal, R. S. Khokhar, A. K. Gupta, D. R. Ledoux, and G. E. Rottinghaus. 2005. Effect of ochratoxin A on broiler chicks challenged with Salmonella Gallinarum. Br. Poult. Sci. 46:443-450.
Gutierrez del Alamo, A., M. W. A. Verstegen, L. A. Den Hartog, P. Perez de Ayala, and M. J. Villamide. 2008. Effect of wheat cultivar and enzyme addition to broiler chicken diets on nutrient digestibility, performance, and apparent metabolizable energy content. Poult. Sci. 87:759-767.
Harmsen, H. J., P. Elfferich, F. Schut, and G. W. Welling. 1999. A 16S rRNA-targeted probe for detection of lactobacilli and enterococci in fecal samples by fluorescent in situ hybridization. Microb. Ecol. Health Dis. 11:3-12.
Harmsen, H. J. M., G. C. Raangs, T. He, J. E. Degener, and G. W. Welling. 2002. Extensive set of 16S rRNA-based probes for detection of bacteria in human excreta. Appl. Environ. Microbiol. 68:2982-2990.
Higgins, J. P., S. E. Higgins, J. L. Vicente, A. D. Wolfenden, G. Tellez, and B. M. Hargis. 2007. Temporal effects of lactic acid bacteria probiotic culture on Salmonella in neonatal broilers. Poult. Sci. 86:1662-1666.
Hübener, K., W. Vahjen, and O. Simon. 2002. Bacterial responses to different dietary cereal types and xylanase supplementation in the intestine of broiler chicken. Arch. Anim. Nutr. 56:167-187.
Hume, M. E., L. F. Kubena, T. S. Edrington, C. J. Donskey, R. W. Moore, S. C. Ricke, and D. J. Nisbet. 2003. Poultry digestive microflora biodiversity as indicated by denaturing gradient gel electrophoresis. Poult. Sci. 82:1100-1107.
Jansen, G. J., A. C. M. Wildeboer-Veloo, R. H. J. Tonk, A. H. Franks, and G. W. Welling. 1999. Development and validation of an automated, microscopy-based method for enumeration of groups of intestinal bacteria. J. Microbiol. Methods 37:215-221.
Jin, L. Z., Y. W. Ho, N. Abdullah, and S. Jalaludin. 1997. Probiotics in poultry: Modes of action. World's Poult. Sci. J. 53:351-368.
Johansson, A. 2006. Clostridium perfringens, the causal agent of necrotic enteritis in poultry. PhD Diss. Swedish University of Agricultural Sciences, Uppsala, Sweden.
Kaiser, P., L. Rothwell, E. E. Galyov, P. A. Barrow, J. Burnside, and P. Wigley. 2000. Differential cytokine expression in avian cells in response to invasion by Salmonella Typhimurium, Salmonella Enteritidis and Salmonella Gallinarum. Microbiology 146:3217-3226.
Langendijk, P. S., F. Schut, G. J. Jansen, G. C. Raangs, G. R. Kamphuis, M. H. Wilkinson, and G. W. Welling. 1995. Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl. Environ. Microbiol. 61:3069-3075.
Mathlouthi, N., S. Mallet, L. Saulnier, B. Quemener, and M. Larbier 2002 Effects of xylanase and β-glucanase addition on performance, nutrient digestibility, and physico-chemical conditions in the small intestine contents and caecal microflora of broiler chickens fed a wheat and barley-based diet. Anim. Res. 51:395-406.
Mead, G. C. 2000. Prospects for "competitive exclusion" treatment to control Salmonella and other foodborne pathogens in poultry. Vet. J. 159:111-123.
Mountzouris, K. C., P. Tsirtsikos, E. Kalamara, S. Nitsch, G. Schatzmayr, and K. Fegeros. 2007. Evaluation of the efficacy of a probiotic containing Lactobacillus, Bifidobacterium, Enterococcus, and Pediococcus strains in promoting broiler performance and modulating caecal microflora composition and metabolic activities. Poult. Sci. 86:309-317.
Nakamura, A., Y. Ota, A. Mizukami, T. Ito, Y. B. Ngwai, and Y. Adachi. 2002. Evaluation of Aviguard, a commercial competitive exclusion product for efficacy and after-effect on the antibody response of chicks to Salmonella. Poult. Sci. 81:1653-1660.
National Reference Center for Salmonella and Shigella. 2007. Annual Report on Human Salmonella and Shigella in Belgium 2006. Report D/2007/2505/45. Scientific Institute of Public Health. WebMD. http://www.iph.fgov.be/bacterio Accessed May 2008.
Netherwood, T., H. J. Gilbert, D. S. Parker, and A. G. O'Donnell. 1999. Probiotics shown to change bacterial community structure in the avian gastrointestinal tract. Appl. Environ. Microbiol. 65:5134-5138.
Pascual, M., M. Hugas, J. I. Badiola, J. M. Monfort, and M. Garriga. 1999 Lactobacillus salivarius CTC2197 prevents Salmonella enteritidis colonization in chickens. Appl. Environ. Microbiol. 65:4981-4986.
Prouty, A. M., I. E. Brodsky, S. Falkow, and J. S. Gunn. 2004. Bile- salt-mediated induction of antimicrobial and bile resistance in Salmonella Typhimurium. Microbiology 150:775-783.
Roblain, D., R. Dubois-Dauphin, S. Vandeplas, P. Hérin, A. Théwis, and P. Thonart. 2002. Etude in vivo d'une d'adsorption de probiotique au niveau du tractus intestinal d'un poulet. Page A15 in Probiotics and Health: Biofunctional Perspectives. Proceedings of the Montreal International Symposium, Saint-Hyacinthe, Quebec, Canada. D. Roy, ed. Fondation des Gouverneurs, Montreal, Quebec, Canada.
Schneitz, C. 2005. Competitive exclusion in poultry-30 years of re- search. Food Contr. 16:657-667.
Simon, O. 2000. Non starch polysaccharide (NSP) hydrolysing en- zymes as feed additives: Mode of action in the gastrointestinal tract. Lohmann Inf. 23:7-13.
Terpstra, K., and N. de Hart. 1974. The estimation of urinary nitrogen and excreta nitrogen in poultry excreta. Z. Tierphysiol. Tierernahr. Futtermittelkd. 32:306-320.
Tsai, C.-C., H.-Y. Hsih, H.-H. Chiu, Y.-Y. Lai, J.-H. Liu, B. Yu, and H.-Y. Tsen. 2005. Antagonistic activity against Salmonella infection in vitro and in vivo for two Lactobacillus strains from swine and poultry. Int. J. Food Microbiol. 102:185-194.
Vahjen, W., K. Gläser, K. Schäfer, and O. Simon. 1998. Influence of xylanase-supplemented feed on the development of selected bacterial groups in the intestinal tract of broiler chicks. J. Agric. Sci. 130:489-500.
Van Immerseel, F., K. Cauweerts, L. A. Devriese, F. Haesebrouck, and R. Ducatelle. 2002. Feed additives to control Salmonella in poultry. World's Poult. Sci. J. 58:501-513.
Waar, K., J. E. Degener, M. J. van Luyn, and H. J. Harmsen. 2005. Fluorescent in situ hybridization with specific DNA probes offers adequate detection of Enterococcus excretais and Enterococcus faecium in clinical samples. J. Med. Microbiol. 54:937-944.
Wolfenden, A. D., C. M. Pixley, J. P. Higgins, S. E. Higgins, J. L. Vicente, A. Torres-Rodriguez, B. M. Hargis, and G. Tellez. 2007. Evaluation of spray application of a Lactobacillus-based probiotic on Salmonella Enteritidis colonization in broiler chickens. Int. J. Poult. Sci. 6:493-496.