Thermomyces lanuginosa Lipase; Tributyrylglycerol; Water
Abstract :
[en] The Thermomyces lanuginosa lipase has been extensively studied in industrial and biotechnological research because of its potential for triacylglycerol transformation. This protein is known to catalyze both hydrolysis at high water contents and transesterification in quasi-anhydrous conditions. Here, we investigated the Thermomyces lanuginosa lipase structure in
solution in the presence of a tributyrin aggregate using 30 ns molecular-dynamics simulations. The water content of the active-site groove was modified between the runs to focus on the protein-water molecule interactions and their implications for protein structure and protein-lipid interactions. The simulations confirmed the high plasticity of the lid fragment and showed
that lipid molecules also bind to a secondary pocket beside the lid. Together, these results strongly suggest that the lid plays a role in the anchoring of the protein to the aggregate. The simulations also revealed the existence of a polar channel that connects the active-site groove to the outside solvent. At the inner extremity of this channel, a tyrosine makes hydrogen bonds
with residues interacting with the catalytic triad. This system could function as a pipe (polar channel) controlled by a valve (the tyrosine) that could regulate the water content of the active site.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Santini, Sébastien; Université de Liège - ULiège > Faculté Universitaire des Sciences Agronomiques de Gembloux > Centre de Biophysique Moléculaire Numérique
Crowet, Jean-Marc ; Université de Liège - ULiège > Chimie et bio-industries > Centre de Bio. Fond. - Section de Biologie moléc. et numér.
Thomas, Annick ; Université de Liège - ULiège > Chimie et bio-industries > Centre de Bio. Fond. - Section de Biologie moléc. et numér.
Paquot, Michel ; Université de Liège - ULiège > Faculté Universitaire des Sciences Agronomiques de Gembloux > Unité de Chimie Biologique Industrielle
Vandenbol, Micheline ; Université de Liège - ULiège > Faculté Universitaire des Sciences Agronomiques de Gembloux > Unité de Biologie animale et microbienne
Thonart, Philippe ; Université de Liège - ULiège > Gembloux Agro-Bio Tech > Gembloux Agro-Bio Tech - Biochimie et microbiologie industrielles
Wathelet, Jean-Paul ; Université de Liège - ULiège > Faculté Universitaire des Sciences Agronomiques de Gembloux > Unité de Chimie Générale Organique
Blecker, Christophe ; Université de Liège - ULiège > Faculté Universitaire des Sciences Agronomiques de Gembloux > Unité de Technologies des Industries Agro-Alimentaires
Lognay, Georges ; Université de Liège - ULiège > Faculté Universitaire des Sciences Agronomiques de Gembloux > Unité de Chimie Analytique
Brasseur, Robert ; Université de Liège - ULiège > Chimie et bio-industries > Centre de Bio. Fond. - Section de Biologie moléc. et numér.
Lins, Laurence ; Université de Liège - ULiège > Chimie et bio-industries > Centre de Bio. Fond. - Section de Biologie moléc. et numér.
Charloteaux, Benoît ; Université de Liège - ULiège > Chimie et bio-industries > Centre de Bio. Fond. - Section de Biologie moléc. et numér.
Language :
English
Title :
Study of thermomyces ianuginosa lipase in the presence of tributyrylglycerol and water
Publication date :
June 2009
Journal title :
Biophysical Journal
ISSN :
0006-3495
eISSN :
1542-0086
Publisher :
Biophysical Society, Bethesda, United States - Maryland
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Ollis, D. L., E. Cheah, M. Cygler, B. Dijkstra, F. Frolow, et al. 1992. The a/b hydrolase fold. Protein Eng. 5:197-211.
Borgstrom, B., and C. Erlanson-Albertsson. 1984. Lipases. In Lipases B. Borgstrom and H. L. Brockman, editors. Elsevier Science Publishers B.V., Amsterdam 152-183.
van Tilbeurgh, H., M. P. Egloff, C. Martinez, N. Rugani, R. Verger, et al. 1993. Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-ray crystallography. Nature. 362:814-820.
van Tilbeurgh, H., L. Sarda, R. Verger, and C. Cambillau. 1992. Structure of the pancreatic lipase-procolipase complex. Nature. 359:159-162.
Borgstrom, B., and C. Erlanson. 1973. Pancreatic lipase and co-lipase. Interactions and effects of bile salts and other detergents. Eur. J. Biochem. 37:60-68.
Jaeger, K. E., B. W. Dijkstra, and M. T. Reetz. 1999. Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu. Rev. Microbiol. 53:315-351.
Villeneuve, P. 2007. Lipases in lipophilization reactions. Biotechnol. Adv. 25:515-536.
Sarda, L., and P. Desnuelle. 1958. Action de la lipase pancreatique sur les esters en emulsion. Biochim. Biophys. Acta. 30:513-521.
Patton, J. S., and M. C. Carey. 1979. Watching fat digestion. Science. 204:145-148.
Brockman, H. L., J. H. Law, and F. J. Kezdy. 1973. Catalysis by adsorbed enzymes. The hydrolysis of tripropionin by pancreatic lipase adsorbed to siliconized glass beads. J. Biol. Chem. 248:4965-4970.
Muderhwa, J. M., and H. L. Brockman. 1992. Lateral lipid distribution is a major regulator of lipase activity. Implications for lipid-mediated signal transduction. J. Biol. Chem. 267:24184-24192.
Derewenda, U., L. Swenson, Y. Wei, R. Green, P. M. Kobos, et al. 1994. Conformational lability of lipases observed in the absence of an oil-water interface: crystallographic studies of enzymes from the fungi Humicola lanuginosa and Rhizopus delemar. J. Lipid Res. 35:524-534.
Kohno, M., J. Funatsu, B. Mikami, W. Kugimiya, T. Matsuo, et al. 1996. The crystal structure of lipase II from Rhizopus niveus at 2.2 A resolution. J. Biochem. (Tokyo). 120:505-510.
Derewenda, U., L. Swenson, R. Green, Y. Wei, G. G. Dodson, et al. 1994. An unusual buried polar cluster in a family of fungal lipases. Nat. Struct. Biol. 1:36-47.
Brzozowski, A. M., H. Savage, C. S. Verma, J. P. Turkenburg, D. M. Lawson, et al. 2000. Structural origins of the interfacial activation in Thermomyces (Humicola) lanuginosa lipase. Biochemistry. 39:15071-15082.
Brady, L., A. M. Brzozowski, Z. S. Derewenda, E. Dodson, G. Dodson, et al. 1990. A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature. 343:767-770.
Brzozowski, A. M., U. Derewenda, Z. S. Derewenda, G. G. Dodson, D. M. Lawson, et al. 1991. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature. 351:491-494.
Peters, G. H., D. M. van Aalten, O. Edholm, S. Toxvaerd, and R. Bywater. 1996. Dynamics of proteins in different solvent systems: analysis of essential motion in lipases. Biophys. J. 71:2245-2255.
Peters, G. H., S. Toxvaerd, O. H. Olsen, and A. Svendsen. 1997. Computational studies of the activation of lipases and the effect of a hydrophobic environment. Protein Eng. 10:137-147.
Noinville, S., M. Revault, M. H. Baron, A. Tiss, S. Yapoudjian, et al. 2002. Conformational changes and orientation of Humicola lanuginosa lipase on a solid hydrophobic surface: an in situ interface Fourier transform infrared-attenuated total reflection study. Biophys. J. 82:2709-2719.
Linderoth, L., T. L. Andresen, K. Jorgensen, R. Madsen, and G. H. Peters. 2008. Molecular basis of phospholipase A2 activity toward phospholipids with sn-1 substitutions. Biophys. J. 94:14-26.
Kleywegt, G. J. 2007. Crystallographic refinement of ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 63:94-100.
Van Der Spoel, D., E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, et al. 2005. GROMACS: fast, flexible, and free. J. Comput. Chem. 26:1701-1718.
Schuttelkopf, A. W., and D. M. van Aalten. 2004. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 60:1355-1363.
van Gunsteren, W. F., S. R. Billeter, A. A. Eising, P. H. Hünenberger, P. Krüger, et al. 1996. Biomolecular Simulation: The GROMOS96 Manual and User Guide. Hochschulverlag AG an der ETH Zürich, Zürich, Switzerland.
Chandrasekhar, I., M. Kastenholz, R. D. Lins, C. Oostenbrink, L. D. Schuler, et al. 2003. A consistent potential energy parameter set for lipids: dipalmitoylphosphatidylcholine as a benchmark of the GROMOS96 45A3 force field. Eur. Biophys. J. 32:67-77.
Berendsen, H. J. C., J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak. 1984. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81:3684-3690.
Ryckaert, J. P., G. Ciccotti, and H. J. C. Berendsen. 1977. Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23: 327-341.
Lindahl, E., B. Hess, and D. van Der Spoel. 2001. GROMACS 3.0: a package for molecular simulation and trajectory analysis. J. Mol. Model. 7:306-317.
deLano, W. L. 2002. The PyMOL Molecular Graphics System. DeLano Scientific, Palo Alto, CA.
Humphrey, W., A. Dalke, and K. Schulten. 1996. VMD: visual molecular dynamics. J. Mol. Graph. 14:33-38, 27-38.
Kabsch, W., and C. Sander. 1983. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 22:2577-2637.
Verger, R. 1995. Enzymes lipolytiques et lipolyse. OCL. 2:52-56.
Beer, H. D., G. Wohlfahrt, J. E. McCarthy, D. Schomburg, and R. D. Schmid. 1996. Analysis of the catalytic mechanism of a fungal lipase using computer-aided design and structural mutants. Protein Eng. 9:507-517.
Yapoudjian, S., M. G. Ivanova, A. M. Brzozowski, S. A. Patkar, J. Vind, et al. 2002. Binding of Thermomyces (Humicola) lanuginosa lipase to the mixed micelles of cis-parinaric acid/NaTDC. Eur. J. Biochem. 269:1613-1621.
Norin, M., O. Olsen, A. Svendsen, O. Edholm, and K. Hult. 1993. Theoretical studies of Rhizomucor miehei lipase activation. Protein Eng. 6:855-863.
Thomas, A., M. Allouche, F. Basyn, R. Brasseur, and B. Kerfelec. 2005. Role of the lid hydrophobicity pattern in pancreatic lipase activity. J. Biol. Chem. 280:40074-40083.
Peters, G. H., and R. P. Bywater. 2001. Influence of a lipid interface on protein dynamics in a fungal lipase. Biophys. J. 81:3052-3065.
Mathews, I., M. Soltis, M. Saldajeno, G. Ganshaw, R. Sala, et al. 2007. Structure of a novel enzyme that catalyzes acyl transfer to alcohols in aqueous conditions. Biochemistry. 46:8969-8979.
Holmquist, M., M. Norin, and K. Hult. 1993. The role of arginines in stabilizing the active open-lid conformation of Rhizomucor miehei lipase. Lipids. 28:721-726.
Poirot, O., K. Suhre, C. Abergel, E. O'Toole, and C. Notredame. 2004. 3DCoffee@igs: a web server for combining sequences and structures into a multiple sequence alignment. Nucleic Acids Res. 32:W37-W40.
Gouet, P., E. Courcelle, D. I. Stuart, and F. Metoz. 1999. ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics. 15:305-308.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.