[en] Predictive microbiology aims to predict the evolution of microorganisms in foods with mathematical models. Several models have been published and the complexity of some of them makes their use difficult for the uninitiated. However, the use of this discipline will become widespread in coming years. These models provide, for example, additional tools to ensure the microbiological safety of food, to establish the contamination flow in a food chain, to develop and to assist the quality assurance systems. The development of new computer software and database will enable stakeholders in the food chain to have a better control of microbiological hazards. The aim of this summary is to give an overview of existing models of predictive microbiology and their applications. A first approach of the primary, secondary and tertiary models is given. The modelling of latency, integrated models and growth tests are also discussed.
Research Center/Unit :
Food Science Department
Disciplines :
Microbiology
Author, co-author :
Delhalle, Laurent ; Université de Liège - ULiège > Département de sciences des denrées alimentaires > Microbiologie des denrées alimentaires
Daube, Georges ; Université de Liège - ULiège > Département de sciences des denrées alimentaires > Microbiologie des denrées alimentaires
Adolphe, Ysabelle ; Université de Liège - ULiège > Département de sciences des denrées alimentaires > Technologie des denrées alimentaires
Crevecoeur, Sébastien ; Université de Liège - ULiège > Département de sciences des denrées alimentaires > Technologie des denrées alimentaires
Clinquart, Antoine ; Université de Liège - ULiège > Département de sciences des denrées alimentaires > Technologie des denrées alimentaires
Language :
French
Title :
Les modèles de microbiologie prévisionellepour la maitrise de la sécurité des aliments (synthèse bibliographique)
Alternative titles :
[en] Growth models in predictive microbiology to ensure food safety
Publication date :
September 2012
Journal title :
Biotechnologie, Agronomie, Société et Environnement
ISSN :
1370-6233
eISSN :
1780-4507
Publisher :
Presses Agronomiques de Gembloux, Gembloux, Belgium
Allongement de la durée de vie des produits alimentaires par la compréhension et la maîtrise des mécanismes responsables de leurs altérations (acronyme : CONSALIM).
Funders :
Project financed by Walloon Region (DGO6, Convention n°5713, 2008-2011)
Augustin J.-C. & Carlier V., 2000. Mathematical modelling of the growth rate and lag time for Listeria monocytogenes. Int. J. Food Microbiol., 56(1), 29-51.
Baranyi J., 1997. Simple is good as long as it is enough. Food Microbiol., 14(2), 189-192.
Baranyi J., Mc Clure P.J., Sutherland J.P. & Roberts T.A., 1993. Modeling bacterial growth responses. J. Ind. Microbiol., 12, 190-194.
Baranyi J. & Roberts T.A., 1994. A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol., 23(3-4), 277-294.
Baranyi J., Ross T., McMeekin T.A. & Roberts T.A., 1996. Effects of parameterization on the performance of empirical models used in 'predictive microbiology'. Food Microbiol., 13(1), 83-91.
Beaufort A., Cornu M., Bergis H. & Lardeux A.L., 2008. Technical guidance document: on shelf-life studies for Listeria monocytogenes in ready-to-eat foods. Paris: EU Community Reference Laboratory for Listeria monocytogenes.
Bigelow W., 1921. The logarithmic nature of thermal death time curves. J. Infect. Dis., 29, 528-536.
Brul S., van Gerwen S. & Zwietering M., 2007. Modelling microorganisms in foods. Cambridge, UK: Woodhead Publishing Limited.
Buchanan R.E., 1918. Life phases in a bacterial culture. J. Infect. Dis., 23, 109-125.
Buchanan R.L. & Solberg M., 1972. Interaction of sodium nitrite, oxygen and pH on growth of Staphylococcus aureus. J. Food Sci., 37, 81-85.
Buchanan R.L. & Cygnarowicz M.L., 1990. A mathematical approach toward defining and calculating the duration of the lag phase. Food Microbiol., 7(3), 237-240.
Buchanan R.L., Whiting R.C. & Damert W.C., 1997. When is simple good enough: a comparison of the Gompertz, Baranyi, and three-phase linear models for fitting bacterial growth curves. Food Microbiol., 14(4), 313-326.
Corroler L., 2006. Étude des facteurs non thermiques agissant sur la décroissance microbienne et modélisation. Thèse de doctorat: Université de Bretagne occidentale (France).
Delhalle L. et al., 2009. Development of predictive modelling tools for food business operators to comply with European food law. In: Thirteenth Conference on Food Microbiology, June 18-19, 2009, University of Liege, Liege, Belgium, 94-95.
Delignette-Muller M.L., Rosso L. & Flandrois J.P., 1995. Accuracy of microbial growth predictions with square root and polynomial models. Int. J. Food Microbiol., 27(2-3), 139-146.
Ellouze M. & Augustin J.-C., 2010. Applicability of biological time temperature integrators as quality and safety indicators for meat products. Int. J. Food Microbiol., 138(1-2), 119-129.
Esty J.R. & Meyer K.F., 1922. The heat resistance of the spores of B. botulinus and related anaerobes. J. Infect. Dis., 31, 650-663.
EU, 2002. Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002 laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety. Off. J. Eur. Union, L31/1-24.
EU, 2004a. Regulation (EC) No 852/2004 of the European Parliament of 29 April 2004 on the hygiene of foodstuffs. Off. J. Eur. Union, 226/3-226/21.
EU, 2004b. Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific hygiene rules for food of animal origin. Off. J. Eur. Union, 001.001/1-59.
EU, 2004c. Regulation (EC) No 854/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific rules for the organisation of official controls on products of animal origin intended for human consumption. Off. J. Eur. Union, L226/83-L226/127.
EU, 2004d. Regulation (EC) No 882/2004 of the European Parliament and of the Council of 29 April 2004 on official controls performed to ensure the verification of compliance with feed and food law, animal health and animal welfare rules. Off. J. Eur. Union, L165/1-L165/141.
EU, 2005. Regulation (EC) No 183/2005 of the European Parliament and of the Council of 12 January 2005 laying down requirements for feed hygiene. Off. J. Eur. Union, L35/1-L35/22.
European Food Safety Authority, 2010. The Community summary report on trends and sources of zoonoses. Zoonotic agents, antimicrobial resistance and foodborne outbreaks in the European Union in 2008. Parma, Italy: European Food Safety Authority.
Gimenez B. & Dalgaard P., 2004. Modelling and predicting the simultaneous growth of Listeria monocytogenes and spoilage micro-organisms in cold-smoked salmon. J. Appl. Microbiol., 96(1), 96-109.
Guillier L. & Augustin J.-C., 2005. Influence of stress on individual lag time distributions of Listeria monocytogenes. Appl. Environ. Microbiol., 71(6), 2940-2948.
Hills B.P. & Wright K.M., 1994. A new model for bacterial growth in heterogeneous systems. J. Theor. Biol., 168(1), 31-41.
Le Marc Y., 2001. Développement d'un modèle modulaire décrivant les effets des interactions entre les facteurs environnementaux sur les aptitudes de croissance de Listeria. Thèse de doctorat: Université de Bretagne occidentale (France).
Le Marc Y. et al., 2002. Modelling the growth kinetics of Listeria as a function of temperature, pH and organic acid concentration. Int. J. Food Microbiol., 73(2-3), 219-237.
Le Marc Y., Pin C. & Baranyi J., 2005. Methods to determine the growth domain in a multidimensional environmental space. Int. J. Food Microbiol., 100(1-3), 3-12.
Likar K. & Jevsnik M., 2006. Cold chain maintaining in food trade. Food Control, 17(2), 108-113.
Lôpez S. et al., 2004. Statistical evaluation of mathematical models for microbial growth. Int. J. Food Microbiol., 96(3), 289-300.
Luning P.A., Devlieghere F. & Verhé R., 2007. Safety in the agri-food chain. Wageningen, The Netherlands: Wageningen Academic.
McKellar R.C., 1997. A heterogeneous population model for the analysis of bacterial growth kinetics. Int. J. Food Microbiol., 36(2-3), 179-186.
McKellar R.C. & Lu X., 2004. Modelling microbial responses in food. Boca Raton, FL, USA: CRC Press.
Miconnet N. et al., 2005. Reflections on the use of robust and least-squares non-linear regression to model challenge tests conducted in/on food products. Int. J. Food Microbiol., 104(2), 161-177.
Pal A., Labuza T.P. & Diez-Gonzalez F., 2008. Comparison of primary predictive models to study the growth of Listeria monocytogenes at low temperatures in liquid cultures and selection of fastest growing ribotypes in meat and turkey product slurries. Food Microbiol., 25(3), 460-470.
Pirt S.J., 1975. Principles of microbe and cell cultivation. London, UK: John Wiley & Sons.
Ratkowsky D.A., Olley J., McMeekin T.A. & Ball A., 1982. Relationship between temperature and growth rate of bacterial cultures. J. Bacteriol., 149(1), 1-5.
Ratkowsky D.A. et al., 1983. Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J. Bacteriol., 154(3), 1222-1226.
Robinson T.P., Ocio M.J., Kaloti A. & Mackey B.M., 1998. The effect of the growth environment on the lag phase of Listeria monocytogenes. Int. J. Food Microbiol., 44(1-2), 83-92.
Ross T., Baranyi J. & McMeekin T.A., 2000. Predictive microbiology and food safety. London, UK: Academic Press.
Ross T. & Dalgaard P., 2003a. Modelling microbial responses in food: secondary models. New York, USA: CRC Press.
Ross T., Ratkowsky D.A., Mellefont L.A. & McMeekin T.A., 2003b. Modelling the effects of temperature, water activity, pH and lactic acid concentration on the growth rate of Escherichia coli. Int. J. Food Microbiol., 82(1), 33-43.
Rosso L., Lobry J.R., Bajard S. & Flandrois J.P., 1995. Convenient model to describe the combined effects of temperature and pH on microbial growth. Appl. Environ. Microbiol., 61(2), 610-616.
Scott W.J., 1937. The growth of microorganisms on ox muscle, the influence of temperature. J. Counc. Sci. Ind. Res. Aust., 10, 338-350.
Swinnen I.A.M. et al., 2004. Predictive modelling of the microbial lag phase, a review. Int. J. Food Microbiol., 94(2), 137-159.
te Giffel M.C. & Zwietering M.H., 1999. Validation of predictive models describing the growth of Listeria monocytogenes. Int. J. Food Microbiol., 46(2), 135-149.
Van Derlinden E., Bernaerts K. & Van Impe J.F., 2008. Accurate estimation of cardinal growth temperatures of Escherichia coli from optimal dynamic experiments. Int. J. Food Microbiol., 128(1), 89-100.
Whiting R.C. & Buchanan R.E., 1993. Letter to the editor: a classification of models in predictive microbiology. A reply to K.R. Davey. Food Microbiol., 10, 175-177.
Wijtzes T. et al., 2001. Development and validation of a combined temperature, water activity, pH model for bacterial growth rate of Lactobacillus curvatus. Int. J. Food Microbiol., 63(1-2), 57-64.
Zwietering M.H., Wijtes T., De Wit J.C. & van't Riet K., 1992. A decision support system for prediction of the microbial spoilage in foods. J. Food Prot., 55, 973-979.
Zwietering M.H., de Wit J.C. & Notermans S., 1996. Application of predictive microbiology to estimate the number of Bacillus cereus in pasteurised milk at the point of consumption. Int. J. Food Microbiol., 30(1-2), 55-70.