Paper published in a book (Scientific congresses and symposiums)
Ensembles on Random Patches
Louppe, Gilles; Geurts, Pierre
2012In Machine Learning and Knowledge Discovery in Databases
Peer reviewed
 

Files


Full Text
glouppe12.pdf
Author preprint (1.22 MB)
Download
Annexes
glouppe12-suppl.pdf
Publisher postprint (103.5 kB)
Supplementary materials
Download
poster.pdf
Publisher postprint (11.46 MB)
Poster presentation
Download
slides.pdf
Publisher postprint (23.48 MB)
Oral presentation
Download

The original publication is available at www.springerlink.com.


All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
ensemble methods; large-scale learning; supervised learning
Abstract :
[en] In this paper, we consider supervised learning under the assumption that the available memory is small compared to the dataset size. This general framework is relevant in the context of big data, distributed databases and embedded systems. We investigate a very simple, yet effective, ensemble framework that builds each individual model of the ensemble from a random patch of data obtained by drawing random subsets of both instances and features from the whole dataset. We carry out an extensive and systematic evaluation of this method on 29 datasets, using decision tree-based estimators. With respect to popular ensemble methods, these experiments show that the proposed method provides on par performance in terms of accuracy while simultaneously lowering the memory needs, and attains significantly better performance when memory is severely constrained.
Disciplines :
Computer science
Author, co-author :
Louppe, Gilles  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Geurts, Pierre  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
Ensembles on Random Patches
Publication date :
2012
Event name :
European Conference on Machine Learning (ECML 2012)
Event organizer :
Prof. Peter Flach
Prof. Tijl De Bie
Prof. Nello Cristianini
Event place :
Bristol, United Kingdom
Event date :
From 24/09/2012 to 28/09/2012
Audience :
International
Main work title :
Machine Learning and Knowledge Discovery in Databases
Publisher :
Springer-Verlag, Berlin, Germany
ISBN/EAN :
978-3-642-33459-7
Collection name :
Lecture Notes in Computer Science, Vol. 7523
Peer reviewed :
Peer reviewed
Available on ORBi :
since 06 September 2012

Statistics


Number of views
683 (82 by ULiège)
Number of downloads
1227 (74 by ULiège)

Scopus citations®
 
125
Scopus citations®
without self-citations
123

Bibliography


Similar publications



Contact ORBi