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Big data

Big data has become ubiquitous

I Life sciences, computer vision, web applications, finance, ...

Big data is challenging !

I Large number of examples (millions to billions), large number
of features (thousands to millions)

I So large that classical machine learning algorithms are no
longer fit.
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Ensembles on Random Patches ?

1 Framework
Pasting
Random Subspaces
Random Patches
Tree-based methods



Pasting (P) [Breiman, 1999]

X Y

...}

Goal : Reduce computing times.

1. Draw a subsample r of psNs

(ps ∈ (0, 1]) random
examples, with all Nf

features.

2. Build a base estimator on r .

3. Repeat 1-2 for a number T
of estimators.

4. Aggregate the predictions by
voting.
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Random Subspaces (RS) [Ho, 1998]

X Y

...}

Goal : Improve accuracy.

1. Draw a subsample r of all
Ns examples, with pf Nf

(pf ∈ (0, 1]) random
features.

2. Build a base estimator on r .

3. Repeat 1-2 for a number T
of estimators.

4. Aggregate the predictions by
voting.



Random Patches (RP) [This work]

X Y

...}

1. Draw a subsample r of psNs

random examples, with
pf Nf random features.

2. Build a base estimator on r .

3. Repeat 1-2 for a number T
of estimators.

4. Aggregate the predictions by
voting.

Goal : Reduce computing times
while improving accuracy ?



Tree-based methods

x2 < 4.

x4 < -2.

class 1

class 2 class 1

A decision tree

Random Forest (RF) [Breiman, 2001]

I Ensemble of randomized trees built on
bootstrap samples (approx., ps = 0.632).

I At each internal node, the chosen split is the
best among optimized splits (cut-points)
over K features drawn at random.

Extra-Trees (ET) [Geurts, 2006]

I Ensemble of randomized trees built on the
entire set (ps = 1.0).

I At each internal node, the chosen split is the
best among K random splits (cut-points)
over K features drawn at random.

For both methods, K features are re-drawn locally
at each node. By contrast, in Random Patches,
pf Nf features are drawn once, globally.
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How such ensembles compare in terms of accuracy ?

2 Accuracy
Experimental results
Conclusions (I)



Experimental results
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Results on small datasets.
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Results on larger datasets.

I Full comparison of 8 methods on
16+13 datasets, using either standard
decision trees (-DT) or randomized
decision trees (-ET) as base
estimators.

I As expected, RP shows to be as good
as P and RS. It improves wrt P but
not wrt RS.

I Global feature sampling does not
impair accuracy. RP and RS are as
good as ET and better than RF.

I Tuned example sampling, as P does, is
often ineffective. (Though it reduces
computing times.)
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Conclusions (I)

I In terms of accuracy, ensembles built on random patches are
usually as good as the other methods.

I Random Patches and Random Subspaces are on par, while
Pasting performs less well. Sampling features is critical to
improve accuracy.

I N.B. : Randomizing cut-points (à la Extra-Trees) is most of
the time beneficial.
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Why tuning both ps and pf ?

3 Sensitivity
Sensitivity to ps

Sensitivity to pf

Sensitivity to ps and pf

Plateaus
Conclusions



Sensitivity to ps

% features
0.2

0.4
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% samples 0.2
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Accuracy

0.32
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0.42

0.44

On some datasets, accuracy mainly increases with ps ,
while pf has a limited effect.
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Sensitivity to ps and pf
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On yet others, accuracy increases with both ps and pf .



Plateaus

% features
0.2

0.4
0.6

0.8

% samples 0.2
0.4

0.6
0.8

Accuracy

0.75

0.80

0.85
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0.95

Finally, accuracy may also plateau with ps and pf .



Conclusions (II)

I Neither Pasting nor Random Subspaces can work well for all
datasets.

I Both ps and pf need to be chosen on a per-dataset basis.



What is the optimal size of the patches ?

Can they be reduced without
affecting (too much) accuracy ?

4 Size of the patches
Optimal size of the patches
Reducing the size of the patches
Reducing further the size of the patches
Conclusions (III)



Optimal size of the patches
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Optimally tuned patch sizes.
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Optimal size of the patches

784

69
83

At optimum, 
the size of a 

patch is only 32% 
of the whole data.
[MNIST3vs8]

42

Optimally tuned patch sizes.



Reducing the size of the patches

784

69
83

Without loss in
accuracy, patches
can be reduced
down to 15%!
[MNIST3vs8]

42

Minimal size without significant impact on accuracy.



Reducing further the size of the patches

784
69
83

On MNIST3vs8,

accuracy only drops

from 0.986 to 0.970

when the size of a

patch is reduced to 1%

of the whole data.

I At the cost of accuracy, the size of the patches
can be reduced even further.

I Though, RP minimizes that loss because it can
find the right trade-off between ps and pf .

Table: Accuracy at 1% [MNIST3vs8]

Method Accuracy

Random Patches 0.970
Pasting 0.928
Random Subspaces 0.924

Extra-Trees 0.918
Random Forest 0.905



Conclusions (III)

I Training each estimator on the whole data is (often) useless.
The size of the random patches can be reduced without
(significant) loss in accuracy.

I As a result, both memory consumption and training time can
be reduced, at low cost.

I With very small patches, accuracy degrades. Yet, RP exploits
data better than the other methods.

I Building estimators on different subsamples is better than
building them all on a same sample.
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So what ?

5 Conclusions
Back to big data
Future work
Questions ?



Back to big data

I Assume that your dataset D is much larger than your memory
of size M. How to build a model out of it ?

I Solution : Build a Random Patches ensemble on D !

1. Draw random patches of size psNs × pf Nf < M and build an
ensemble out of them.

2. Adjust both ps and pf to maximize accuracy.
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Future work

I Experiments on giga-scale datasets (ongoing work).

I Automatic tuning of ps and pf .
I Theoretical analysis

I How small can random patches be ?
I Under which assumptions ?



Questions ?
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