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Big data

Big data has become ubiquitous
» Life sciences, computer vision, web applications, finance, ...
Big data is challenging!

» Large number of examples (millions to billions), large number
of features (thousands to millions)

» So large that classical machine learning algorithms are no
longer fit.
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Ensembles on Random Patches ?

@ Framework
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Pasting (P) [Breiman, 1999]
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Random Subspaces (RS) [Ho, 1998]

Goal : Improve accuracy.

Nf
1. Draw a subsample r of all
Ns examples, with prN¢
(pr € (0,1]) random
N, features.
2. Build a base estimator on r.
3. Repeat 1-2 for a number T
of estimators.
X Y

4. Aggregate the predictions by

voting.
Ensemble



Random Patches (RP) [This work]

N; 1. Draw a subsample r of psNs
random examples, with
prN¢ random features.

I 2. Build a base estimator on r.

s 3. Repeat 1-2 for a number T

of estimators.
4. Aggregate the predictions by
voting.
Goal : Reduce computing times
while improving accuracy ?

Ensemble
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Tree-based methods

Random Forest (RF) [Breiman, 2001]
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bootstrap samples (approx., ps = 0.632).

» At each internal node, the chosen split is the
best among optimized splits (cut-points)
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Tree-based methods

Random Forest (RF) [Breiman, 2001]
» Ensemble of randomized trees built on
bootstrap samples (approx., ps = 0.632).
» At each internal node, the chosen split is the
best among optimized splits (cut-points)
over K features drawn at random.

No Yes
Extra-Trees (ET) [Geurts, 2006]
lass 1 ) .
G » Ensemble of randomized trees built on the
" e entire set (ps = 1.0).
class 2 class 1 » At each internal node, the chosen split is the
best among K random splits (cut-points)
A decision tree over K features drawn at random.

For both methods, K features are re-drawn locally
at each node. By contrast, in Random Patches,
prN¢ features are drawn once, globally.



How such ensembles compare in terms of accuracy ?

@® Accuracy
Experimental results
Conclusions (1)
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Results on larger datasets.

Full comparison of 8 methods on
16+13 datasets, using either standard
decision trees (-DT) or randomized
decision trees (-ET) as base
estimators.

As expected, RP shows to be as good
as P and RS. It improves wrt P but
not wrt RS.

Global feature sampling does not
impair accuracy. RP and RS are as
good as and better than

Tuned example sampling, as P does, is
often ineffective. (Though it reduces
computing times.)
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Conclusions (1)

> In terms of accuracy, ensembles built on random patches are
usually as good as the other methods.

» Random Patches and Random Subspaces are on par, while
Pasting performs less well. Sampling features is critical to
improve accuracy.

» N.B. : Randomizing cut-points (a la Extra-Trees) is most of
the time beneficial.



Why tuning both ps and pf 7
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Sensitivity to ps
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On some datasets, accuracy mainly increases with ps,
while pr has a limited effect.



Sensitivity to pr
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On others, accuracy mainly increases with pr,
while ps has a limited effect.



Sensitivity to ps and pr
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On yet others, accuracy increases with both ps and pr



Plateaus
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Finally, accuracy may also plateau with ps and pr.



Conclusions (II)

» Neither Pasting nor Random Subspaces can work well for all
datasets.

» Both ps and pr need to be chosen on a per-dataset basis.



What is the optimal size of the patches ?

Can they be reduced without
affecting (too much) accuracy ?

@ Size of the patches
Optimal size of the patches
Reducing the size of the patches
Reducing further the size of the patches
Conclusions (I11)



Optimal size of the patches
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Optimal size of the patches
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Optimal size of the patches

1.0
\ ! 784

0.8} At optimum,
the size of a

patch is only 32%

os of the whole data.

[MNIST3vs8]

p_f

0.41

0.2}

0'8. 0.2 0.4 0.6 0.8 1.0

p.s

Optimally tuned patch sizes.



Reducing the size of the patches
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accuracy, patches
can be reduced
down to 15%!
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Minimal size without significant impact on accuracy.



Reducing further the size of the patches

784

| » At the cost of accuracy, the size of the patches
can be reduced even further.

» Though, RP minimizes that loss because it can
find the right trade-off between ps and ps.

6983

TABLE: Accuracy at 1% [MNIST3vs8]

Method Accuracy
Random Patches 0.970
On MUISTS =5 Pasting 0.928
:;:rzcgysznt'z Zr:: Random Subspaces 0.924
o Extra-Trees 0.918
Random Forest 0.905

patch is reduced to 1%

of the whole data.
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Conclusions (IlI)

» Training each estimator on the whole data is (often) useless.
The size of the random patches can be reduced without
(significant) loss in accuracy.

» As a result, both memory consumption and training time can
be reduced, at low cost.

» With very small patches, accuracy degrades. Yet, RP exploits
data better than the other methods.

» Building estimators on different subsamples is better than
building them all on a same sample.



So what ?
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Back to big data

» Assume that your dataset D is much larger than your memory
of size M. How to build a model out of it ?
» Solution : Build a Random Patches ensemble on D!

1. Draw random patches of size psNs; x prNs < M and build an
ensemble out of them.
2. Adjust both ps and ps to maximize accuracy.



Future work

» Experiments on giga-scale datasets (ongoing work).

» Automatic tuning of ps and pr.

» Theoretical analysis
» How small can random patches be ?
» Under which assumptions ?



Questions ?
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