
Ensembles on Random Patches

Gilles Louppe and Pierre Geurts

Dept. of EE & CS, & GIGA-R
Université de Liège, Belgium

September 25, 2012



Big data

Big data has become ubiquitous

I Life sciences, computer vision, web applications, finance, ...

Big data is challenging !

I Large number of examples (millions to billions), large number
of features (thousands to millions)

I So large that classical machine learning algorithms are no
longer fit.



Big data

Big data has become ubiquitous

I Life sciences, computer vision, web applications, finance, ...

Big data is challenging !

I Large number of examples (millions to billions), large number
of features (thousands to millions)

I So large that classical machine learning algorithms are no
longer fit.



Big data, an example



Big data, an example



Outline

1 Framework

2 Accuracy

3 Sensitivity

4 Size of the patches

5 Conclusions



Ensembles on Random Patches ?

1 Framework
Pasting
Random Subspaces
Random Patches
Tree-based methods



Pasting (P) [Breiman, 1999]

X Y

...}

Goal : Reduce computing times.

1. Draw a subsample r of psNs

(ps ∈ (0, 1]) random
examples, with all Nf

features.

2. Build a base estimator on r .

3. Repeat 1-2 for a number T
of estimators.

4. Aggregate the predictions by
voting.



Pasting (P) [Breiman, 1999]

X Y

X Y

...}

Goal : Reduce computing times.

1. Draw a subsample r of psNs

(ps ∈ (0, 1]) random
examples, with all Nf

features.

2. Build a base estimator on r .

3. Repeat 1-2 for a number T
of estimators.

4. Aggregate the predictions by
voting.



Pasting (P) [Breiman, 1999]

X Y

X Y

...}

Goal : Reduce computing times.

1. Draw a subsample r of psNs

(ps ∈ (0, 1]) random
examples, with all Nf

features.

2. Build a base estimator on r .

3. Repeat 1-2 for a number T
of estimators.

4. Aggregate the predictions by
voting.



Pasting (P) [Breiman, 1999]

X Y

X Y

...}

Goal : Reduce computing times.

1. Draw a subsample r of psNs

(ps ∈ (0, 1]) random
examples, with all Nf

features.

2. Build a base estimator on r .

3. Repeat 1-2 for a number T
of estimators.

4. Aggregate the predictions by
voting.



Pasting (P) [Breiman, 1999]

X Y

...}

Goal : Reduce computing times.

1. Draw a subsample r of psNs

(ps ∈ (0, 1]) random
examples, with all Nf

features.

2. Build a base estimator on r .

3. Repeat 1-2 for a number T
of estimators.

4. Aggregate the predictions by
voting.



Random Subspaces (RS) [Ho, 1998]

X Y

...}

Goal : Improve accuracy.

1. Draw a subsample r of all
Ns examples, with pf Nf

(pf ∈ (0, 1]) random
features.

2. Build a base estimator on r .

3. Repeat 1-2 for a number T
of estimators.

4. Aggregate the predictions by
voting.



Random Patches (RP) [This work]

X Y

...}

1. Draw a subsample r of psNs

random examples, with
pf Nf random features.

2. Build a base estimator on r .

3. Repeat 1-2 for a number T
of estimators.

4. Aggregate the predictions by
voting.

Goal : Reduce computing times
while improving accuracy ?



Tree-based methods

x2 < 4.

x4 < -2.

class 1

class 2 class 1

A decision tree

Random Forest (RF) [Breiman, 2001]

I Ensemble of randomized trees built on
bootstrap samples (approx., ps = 0.632).

I At each internal node, the chosen split is the
best among optimized splits (cut-points)
over K features drawn at random.

Extra-Trees (ET) [Geurts, 2006]

I Ensemble of randomized trees built on the
entire set (ps = 1.0).

I At each internal node, the chosen split is the
best among K random splits (cut-points)
over K features drawn at random.

For both methods, K features are re-drawn locally
at each node. By contrast, in Random Patches,
pf Nf features are drawn once, globally.



Tree-based methods

x2 < 4.

x4 < -2.

class 1

class 2 class 1

A decision tree

Random Forest (RF) [Breiman, 2001]

I Ensemble of randomized trees built on
bootstrap samples (approx., ps = 0.632).

I At each internal node, the chosen split is the
best among optimized splits (cut-points)
over K features drawn at random.

Extra-Trees (ET) [Geurts, 2006]

I Ensemble of randomized trees built on the
entire set (ps = 1.0).

I At each internal node, the chosen split is the
best among K random splits (cut-points)
over K features drawn at random.

For both methods, K features are re-drawn locally
at each node. By contrast, in Random Patches,
pf Nf features are drawn once, globally.



Tree-based methods

x2 < 4.

x4 < -2.

class 1

class 2 class 1

A decision tree

Random Forest (RF) [Breiman, 2001]

I Ensemble of randomized trees built on
bootstrap samples (approx., ps = 0.632).

I At each internal node, the chosen split is the
best among optimized splits (cut-points)
over K features drawn at random.

Extra-Trees (ET) [Geurts, 2006]

I Ensemble of randomized trees built on the
entire set (ps = 1.0).

I At each internal node, the chosen split is the
best among K random splits (cut-points)
over K features drawn at random.

For both methods, K features are re-drawn locally
at each node. By contrast, in Random Patches,
pf Nf features are drawn once, globally.



Tree-based methods

x2 < 4.

x4 < -2.

class 1

class 2 class 1

A decision tree

Random Forest (RF) [Breiman, 2001]

I Ensemble of randomized trees built on
bootstrap samples (approx., ps = 0.632).

I At each internal node, the chosen split is the
best among optimized splits (cut-points)
over K features drawn at random.

Extra-Trees (ET) [Geurts, 2006]

I Ensemble of randomized trees built on the
entire set (ps = 1.0).

I At each internal node, the chosen split is the
best among K random splits (cut-points)
over K features drawn at random.

For both methods, K features are re-drawn locally
at each node. By contrast, in Random Patches,
pf Nf features are drawn once, globally.



How such ensembles compare in terms of accuracy ?

2 Accuracy
Experimental results
Conclusions (I)



Experimental results

CD

8 7 6 5 4 3 2 1

ET
RS-ET
RP-ET
P-ET

P-DT
RS-DT

RF
RP-DT

Results on small datasets.

CD

8 7 6 5 4 3 2 1

RS-ET
ET

RS-DT
RP-ET

P-DT
RF

P-ET
RP-DT

Results on larger datasets.

I Full comparison of 8 methods on
16+13 datasets, using either standard
decision trees (-DT) or randomized
decision trees (-ET) as base
estimators.

I As expected, RP shows to be as good
as P and RS. It improves wrt P but
not wrt RS.

I Global feature sampling does not
impair accuracy. RP and RS are as
good as ET and better than RF.

I Tuned example sampling, as P does, is
often ineffective. (Though it reduces
computing times.)



Experimental results

CD

8 7 6 5 4 3 2 1

ET
RS-ET
RP-ET
P-ET

P-DT
RS-DT

RF
RP-DT

Results on small datasets.

CD

8 7 6 5 4 3 2 1

RS-ET
ET

RS-DT
RP-ET

P-DT
RF

P-ET
RP-DT

Results on larger datasets.

I Full comparison of 8 methods on
16+13 datasets, using either standard
decision trees (-DT) or randomized
decision trees (-ET) as base
estimators.

I As expected, RP shows to be as good
as P and RS. It improves wrt P but
not wrt RS.

I Global feature sampling does not
impair accuracy. RP and RS are as
good as ET and better than RF.

I Tuned example sampling, as P does, is
often ineffective. (Though it reduces
computing times.)



Experimental results

CD

8 7 6 5 4 3 2 1

ET
RS-ET
RP-ET
P-ET

P-DT
RS-DT

RF
RP-DT

Results on small datasets.

CD

8 7 6 5 4 3 2 1

RS-ET
ET

RS-DT
RP-ET

P-DT
RF

P-ET
RP-DT

Results on larger datasets.

I Full comparison of 8 methods on
16+13 datasets, using either standard
decision trees (-DT) or randomized
decision trees (-ET) as base
estimators.

I As expected, RP shows to be as good
as P and RS. It improves wrt P but
not wrt RS.

I Global feature sampling does not
impair accuracy. RP and RS are as
good as ET and better than RF.

I Tuned example sampling, as P does, is
often ineffective. (Though it reduces
computing times.)



Experimental results

CD

8 7 6 5 4 3 2 1

ET
RS-ET
RP-ET
P-ET

P-DT
RS-DT

RF
RP-DT

Results on small datasets.

CD

8 7 6 5 4 3 2 1

RS-ET
ET

RS-DT
RP-ET

P-DT
RF

P-ET
RP-DT

Results on larger datasets.

I Full comparison of 8 methods on
16+13 datasets, using either standard
decision trees (-DT) or randomized
decision trees (-ET) as base
estimators.

I As expected, RP shows to be as good
as P and RS. It improves wrt P but
not wrt RS.

I Global feature sampling does not
impair accuracy. RP and RS are as
good as ET and better than RF.

I Tuned example sampling, as P does, is
often ineffective. (Though it reduces
computing times.)



Conclusions (I)

I In terms of accuracy, ensembles built on random patches are
usually as good as the other methods.

I Random Patches and Random Subspaces are on par, while
Pasting performs less well. Sampling features is critical to
improve accuracy.

I N.B. : Randomizing cut-points (à la Extra-Trees) is most of
the time beneficial.



Conclusions (I)

I In terms of accuracy, ensembles built on random patches are
usually as good as the other methods.

I Random Patches and Random Subspaces are on par, while
Pasting performs less well. Sampling features is critical to
improve accuracy.

I N.B. : Randomizing cut-points (à la Extra-Trees) is most of
the time beneficial.



Conclusions (I)

I In terms of accuracy, ensembles built on random patches are
usually as good as the other methods.

I Random Patches and Random Subspaces are on par, while
Pasting performs less well. Sampling features is critical to
improve accuracy.

I N.B. : Randomizing cut-points (à la Extra-Trees) is most of
the time beneficial.



Why tuning both ps and pf ?

3 Sensitivity
Sensitivity to ps

Sensitivity to pf

Sensitivity to ps and pf

Plateaus
Conclusions



Sensitivity to ps

% features
0.2

0.4
0.6

0.8

% samples 0.2
0.4

0.6
0.8

Accuracy

0.32

0.34

0.36

0.38

0.40

0.42

0.44

On some datasets, accuracy mainly increases with ps ,
while pf has a limited effect.



Sensitivity to pf

% features
0.2

0.4
0.6

0.8

% samples 0.2
0.4

0.6
0.8

Accuracy

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

On others, accuracy mainly increases with pf ,
while ps has a limited effect.



Sensitivity to ps and pf

% features
0.2

0.4
0.6

0.8

% samples 0.2
0.4

0.6
0.8

Accuracy

0.55

0.60

0.65

0.70

0.75

0.80

On yet others, accuracy increases with both ps and pf .



Plateaus

% features
0.2

0.4
0.6

0.8

% samples 0.2
0.4

0.6
0.8

Accuracy

0.75

0.80

0.85

0.90

0.95

Finally, accuracy may also plateau with ps and pf .



Conclusions (II)

I Neither Pasting nor Random Subspaces can work well for all
datasets.

I Both ps and pf need to be chosen on a per-dataset basis.



What is the optimal size of the patches ?

Can they be reduced without
affecting (too much) accuracy ?

4 Size of the patches
Optimal size of the patches
Reducing the size of the patches
Reducing further the size of the patches
Conclusions (III)



Optimal size of the patches

42

Optimally tuned patch sizes.



Optimal size of the patches

Optimally tuned patch sizes.



Optimal size of the patches

784

69
83

At optimum, 
the size of a 

patch is only 32% 
of the whole data.
[MNIST3vs8]

42

Optimally tuned patch sizes.



Reducing the size of the patches

784

69
83

Without loss in
accuracy, patches
can be reduced
down to 15%!
[MNIST3vs8]

42

Minimal size without significant impact on accuracy.



Reducing further the size of the patches

784
69
83

On MNIST3vs8,

accuracy only drops

from 0.986 to 0.970

when the size of a

patch is reduced to 1%

of the whole data.

I At the cost of accuracy, the size of the patches
can be reduced even further.

I Though, RP minimizes that loss because it can
find the right trade-off between ps and pf .

Table: Accuracy at 1% [MNIST3vs8]

Method Accuracy

Random Patches 0.970
Pasting 0.928
Random Subspaces 0.924

Extra-Trees 0.918
Random Forest 0.905



Conclusions (III)

I Training each estimator on the whole data is (often) useless.
The size of the random patches can be reduced without
(significant) loss in accuracy.

I As a result, both memory consumption and training time can
be reduced, at low cost.

I With very small patches, accuracy degrades. Yet, RP exploits
data better than the other methods.

I Building estimators on different subsamples is better than
building them all on a same sample.



Conclusions (III)

I Training each estimator on the whole data is (often) useless.
The size of the random patches can be reduced without
(significant) loss in accuracy.

I As a result, both memory consumption and training time can
be reduced, at low cost.

I With very small patches, accuracy degrades. Yet, RP exploits
data better than the other methods.

I Building estimators on different subsamples is better than
building them all on a same sample.



Conclusions (III)

I Training each estimator on the whole data is (often) useless.
The size of the random patches can be reduced without
(significant) loss in accuracy.

I As a result, both memory consumption and training time can
be reduced, at low cost.

I With very small patches, accuracy degrades. Yet, RP exploits
data better than the other methods.

I Building estimators on different subsamples is better than
building them all on a same sample.



Conclusions (III)

I Training each estimator on the whole data is (often) useless.
The size of the random patches can be reduced without
(significant) loss in accuracy.

I As a result, both memory consumption and training time can
be reduced, at low cost.

I With very small patches, accuracy degrades. Yet, RP exploits
data better than the other methods.

I Building estimators on different subsamples is better than
building them all on a same sample.



So what ?

5 Conclusions
Back to big data
Future work
Questions ?



Back to big data

I Assume that your dataset D is much larger than your memory
of size M. How to build a model out of it ?

I Solution : Build a Random Patches ensemble on D !

1. Draw random patches of size psNs × pf Nf < M and build an
ensemble out of them.

2. Adjust both ps and pf to maximize accuracy.



Back to big data

I Assume that your dataset D is much larger than your memory
of size M. How to build a model out of it ?

I Solution : Build a Random Patches ensemble on D !

1. Draw random patches of size psNs × pf Nf < M and build an
ensemble out of them.

2. Adjust both ps and pf to maximize accuracy.



Future work

I Experiments on giga-scale datasets (ongoing work).

I Automatic tuning of ps and pf .
I Theoretical analysis

I How small can random patches be ?
I Under which assumptions ?



Questions ?


	Framework
	Pasting
	Random Subspaces
	Random Patches
	Tree-based methods

	Accuracy
	Experimental results
	Conclusions (I)

	Sensitivity
	Sensitivity to ps
	Sensitivity to pf
	Sensitivity to ps and pf
	Plateaus
	Conclusions

	Size of the patches
	Optimal size of the patches
	Reducing the size of the patches
	Reducing further the size of the patches
	Conclusions (III)

	Conclusions
	Back to big data
	Future work
	Questions?


