
Ensembles on Random Patches
Gilles Louppe and Pierre Geurts

Questions? http://www.montefiore.ulg.ac.be/~glouppe

Abstract

In this paper, we consider supervised learning under the assumption that the
available memory is small compared to the dataset size. This general
framework is relevant in the context of big data, distributed databases and
embedded systems. We investigate a very simple, yet effective, ensemble
framework that builds each individual model of the ensemble from a
random patch of data obtained by drawing random subsets of both
instances and features from the whole dataset. We carry out an extensive
and systematic evaluation of this method on 29 datasets, using decision
tree-based estimators. With respect to popular ensemble methods, these
experiments show that the proposed method provides on par
performance in terms of accuracy while simultaneously lowering the
memory needs, and attains significantly better performance when
memory is severely constrained.

Framework Ensembles on Random Patches ?

Pasting (P)
[Breiman, 1999]

X Y

...}

+ Random Subspaces (RS)
[Ho, 1998]

X Y

...}

= Random Patches (RP)
[This work]

X Y

...}

1. Draw a subsample r of psNs random examples, with pf Nf random features.

2. Build a base estimator on r .

3. Repeat 1-2 for a number T of estimators.

4. Aggregate the predictions by voting.

Goal : Reduce computing times (as P) while improving accuracy (as RS) ?

Tree-based methods Trees ?

Random Forest (RF) [Breiman, 2001]

I Ensemble of randomized trees built on bootstrap samples (approx.,
ps = 0.632).

I At each internal node, the chosen split is the best among optimized splits
(cut-points) over K features drawn at random.

Extra-Trees (ET) [Geurts, 2006]

I Ensemble of randomized trees built on the entire set (ps = 1.0).

I At each internal node, the chosen split is the best among K random splits
(cut-points) over K features drawn at random.

For both methods, K features are re-drawn locally at each node. By contrast,
in Random Patches, pf Nf features are drawn once, globally.

Accuracy How such ensembles compare with others ?

CD
8 7 6 5 4 3 2 1

ET
RS-ET
RP-ET
P-ET

P-DT
RS-DT

RF
RP-DT

Results on small datasets.

CD
8 7 6 5 4 3 2 1

RS-ET
ET

RS-DT
RP-ET

P-DT
RF

P-ET
RP-DT

Results on larger datasets.

I Full comparison of 8 methods on 16+13
datasets, using either standard decision trees
(-DT) or randomized decision trees (-ET) as
base estimators.

I As expected, RP shows to be as good as P and
RS. It improves wrt P but not wrt RS.

I Global feature sampling does not impair
accuracy. RP and RS are as good as ET and
better than RF.

I Tuned example sampling, as P does, is often
ineffective. (Though it reduces computing times.)

Conclusions (I)

I In terms of accuracy, ensembles built on random patches are usually as good
as the other methods.

I Random Patches and Random Subspaces are on par, while Pasting performs
less well. Sampling features is critical to improve accuracy.

I N.B. : Randomizing cut-points (à la Extra-Trees) is most of the time
beneficial.

Sensitivity Why tuning both ps and pf ?

% features
0.2

0.4
0.6

0.8

% samples 0.2
0.4

0.6
0.8

Accuracy

0.32

0.34

0.36

0.38

0.40

0.42

0.44

% features
0.2

0.4
0.6

0.8

% samples 0.2
0.4

0.6
0.8

Accuracy

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

% features
0.2

0.4
0.6

0.8

% samples 0.2
0.4

0.6
0.8

Accuracy

0.55

0.60

0.65

0.70

0.75

0.80

% features
0.2

0.4
0.6

0.8

% samples 0.2
0.4

0.6
0.8

Accuracy

0.75

0.80

0.85

0.90

0.95

Accuracy increases either with ps , or with pf , or with both or plateaus.

Conclusions (II)

I Neither Pasting nor Random Subspaces can work well for all datasets.

I Both ps and pf need to be chosen on a per-dataset basis.

Size of the patches Optimal size ? Smaller size ?

784

69
83

At optimum, 
the size of a 

patch is only 32% 
of the whole data.
[MNIST3vs8]

42

Optimally tuned patch sizes.

784

69
83

Without loss in
accuracy, patches
can be reduced
down to 15%!
[MNIST3vs8]

42

Minimal size without significant impact
on accuracy.

0.0 0.1 0.2 0.3 0.4 0.5
Memory constraint

0.90

0.92

0.94

0.96

0.98

Ac
cu

ra
cy

RP-ET
RP-DT
RS-ET
RS-DT
P-ET
P-DT
ET
RF

Accuracy using only 1% of data per
tree [MNIST3vs8] :

Method Accuracy
Random Patches 0.970
Pasting 0.928
Random Subspaces 0.924
Extra-Trees 0.918
Random Forest 0.905

I At the cost of accuracy, the size of
the patches can be reduced even
further.

I Though, RP minimizes that loss
because it can find the right
trade-off between ps and pf .

Conclusions (III)

I Training each estimator on the whole data is (often) useless. The size of the
random patches can be reduced without (significant) loss in accuracy.

I As a result, both memory consumption and training time can be reduced, at
low cost.

I With very small patches, accuracy degrades. Yet, RP exploits data better
than the other methods.

I Building estimators on different subsamples is better than building them all
on a same sample.

Big data So what ?

I Assume that your dataset D is much larger than your memory of size M .
How to build a model out of it ?

I Solution : Build a Random Patches ensemble on D !

1. Draw random patches of size psNs × pf Nf < M and build an ensemble
out of them.

2. Adjust both ps and pf to maximize accuracy.

http://www.montefiore.ulg.ac.be/~glouppe

