[en] Agar contact microbiological sampling techniques, based on a transfer of the microorganisms present on a surface to a culture medium, are widely used to assess and control surface cleanliness and to evaluate microbial contamination levels. The effectiveness of these techniques depends on many environmental parameters that influence the strength of attachment of the bacteria to the surface. In the present study, stainless steel and high density polyethylene surfaces were inoculated with known concentrations of Staphylococcus epidermidis. Following an experimental design, the surfaces were sampled with different types of replicate organism direct agar contact plates and Petrifilm; results indicated that recovery rates were influenced by the presence of egg white albumin or Tween 80 in the inoculum solutions or by the introduction of surfactants into the contact agar of the microbiological sampling techniques. The techniques yielded significantly different results, depending on sampling conditions, underlining the need for a standardization of laboratory experiments to allow relevant comparisons of such techniques.
Disciplines :
Food science
Author, co-author :
Deckers, Sylvie M.; Katholieke Universiteit Leuven, Faculty of Bioscience Engineering, Kasteelpark Arenberg, 33 P.O. Box 2463, BE-3001 Heverlee, Belgium > Department of Microbial and Molecular Systems (M2S)
Sindic, Marianne ; Université de Liège - ULiège > Chimie et bio-industries > Technologie des industries agro-alimentaires
Anceau, Christine ; Université de Liège - ULiège > Chimie et bio-industries > Technologie des industries agro-alimentaires
Brostaux, Yves ; Université de Liège - ULiège > Sciences agronomiques > Statistique, Inform. et Mathém. appliquée à la bioingénierie
Detry, Jean G.
Language :
English
Title :
Possible Influence of Surfactants and Proteins on the Efficiency of Contact Agar Microbiological Surface Sampling
Publication date :
November 2010
Journal title :
Journal of Food Protection
ISSN :
0362-028X
eISSN :
1944-9097
Publisher :
International Association for Food Protection, Des Moines, United States - Iowa
Bayoudh, S., A. Othmane, F. Bettaieb, A. Bakhrouf, H. Ben Ouada, and L. Ponsonnet. 2006. Quantification of the adhesion free energy between bacteria and hydrophobic and hydrophilic substrata. Mater. Sci. Eng. C 26:300-305.
Boonaert, C. J. P., Y. Dufreêe, and P. G. Rouxhet. 2002. Adhesion (primary) of microorganisms onto surfaces, p. 113-132. In G. Bitton (ed.), Encyclopedia of environmental microbiology. Wiley, New York.
Boulos, L., M. Prévost, B. Barbeau, J. Coallier, and R. Desjardins. 1999. Live/dead baclightTM: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J. Microbiol. Methods 37:77-86.
Bower, C. K., J. McGuire, and M. A. Daeschel. 1996. The adhesion and detachment of bacteria and spores on food-contact surfaces. Trends Food Sci. Technol. 7:152-157.
Callewaert, M. 2004. Surface modification by stimuli responsive polymers from model systems to stainless steel cleanability. Ph.D. thesis. Université catholique de Louvain, Louvain-la-Neuve, Belgium.
Cerca, N., G. B. Pier, M. Vilanova, R. Oliveira, and J. Azeredo. 2005. Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis. Res. Microbiol. 156:506-514.
Chen, J., M. Feng, Y. Gonzalez, and L. A. Pugnaloni. 2008. Application of probe tensile method for quantitative characterisation of the stickiness of fluid foods. J. Food Eng. 87:281-290.
Codex Alimentarius Commission. 2003. Recommended international code of practise - general principles of food hygiene. CAC/RCP 1- 1969, rev. 4-2003. Food and Agriculture Organization of the United Nations, Rome.
Corrégé, I., A. Le Roux, and M. Butin. 1995. Comparaison de méthodes rapides de contrôle de l'efficacité du nettoyage-désinfection. Viandes Prod. Carnés 16:123-130.
Dagnelie, P. 2006. Statistique théorique et appliquée. tome 2. Inférence statistique à une et à deux dimensions. Deboeck et Larcier, Brussels.
Davidson, C. A., C. J. Griffith, A. C. Peters, and L. M. Fielding. 1999. Evaluation of two methods for monitoring surface cleanliness - ATP bioluminescence and traditional hygiene swabbing. Luminescence 14:33-38.
Detry, J. G. 2009. Adherence to solid surfaces: relation with fouling and cleaning. Ph.D. thesis. Liege University, Gembloux Agro-Bio Tech, Gembloux, Belgium.
Eginton, P. J., H. Gibson, J. Holah, P. S. Handley, and P. Gilbert. 1995. The influence of substratum properties on the attachment of bacterial cells. Colloids Surf. B Biointerfaces 5:153-159.
European Commission. 2002. Commission Regulation No 178/2002 of the European Parliament and of the Council of 28 January 2002, laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety. Off. J. Eur. Communities L 31, 01.02.2002.
Foschino, R., C. Picozzi, A. Civardi, M. Bandini, and P. Faroldi. 2003. Comparison of surface sampling methods and cleanability assessment of stainless steel surfaces subjected or not to shot peening. J. Food Eng. 60:375-381
International Organization for Standardization. 2004. Microbiology of food and animal feeding stuffs - horizontal methods for sampling techniques from surfaces using contact plates and swabs. ISO 18593:2004. International Organization for Standardization, Geneva
International Organization for Standardization. 2005. Food safety management systems - requirements for any organization in the food chain. ISO 22000:2005. International Organization for Standardization, Geneva.
Keuls, M. 1952. The use of the "studentized range" in connection with an analysis of variance. Euphytica 1:112-122.
Kralchevsky, P. A., and N. D. Denkov. 2001. Capillary forces and structuring in layers of colloid particles. Curr. Opin. Colloid Interface Sci. 6:383-401.
Kralchevsky, P. A., and K. Nagayama. 2001. Capillary bridges and capillary-bridge forces, p. 469-502.
D. Möbius and R. Miller (ed.), Attachment of colloid particles and proteins to interfaces and formation of two-dimensional arrays. Elsevier, Amsterdam.
Moore, G., and C. Griffith. 2002. A comparison of surface sampling methods for detecting coliforms on food contact surfaces. Food Microbiol. 19:65-73.
Moore, G., and C. Griffith. 2007. Problems associated with traditional hygiene swabbing: the need for in-house standardization. J. Appl. Microbiol. 103:1090-1103.
Newman, D. 1939. The distribution of range in samples from a normal population, expressed in terms of independent estimate of standard deviation. Biometrika 31(1-2):20-30.
Paajanen, M., J. Katainen, O. H. Pakarinen, A. S. Foster, and J. Lahtinen. 2006. Experimental humidity dependency of small particle adhesion on silica and titania. J. Colloid Interface Sci. 304:518-523.
Poletti, L., C. Pasquarella, M. Pitzurra, and A. Savino. 1999. Comparative efficiency of nitrocellulose membranes versus rodac plates in microbial sampling on surfaces. J. Hosp. Infect. 41:195-201.
Rabinovich, Y. I., J. J. Adler, M. S. Esayanur, A. Ata, R. Singh, and B. M. Moudgil. 2002. Capillary forces between surfaces with nanoscale roughness. Adv. Colloid Interface Sci. 96:213-230.
Rühlmann, S., and F. Feldhusen. 1996. Untersuchungen zur aussagekraft vershiedener oberflächenabklatschsysteme bei unterschiedlichen materialien. Fleischwirtschaft 76:840-843.
Salo, S., T. Alanko, A. Sjöberg, and G. Wirtanen. 2002. Validation of the hygicult e dipslides method in surface hygiene control: a Nordic collaborative study. J. AOAC Int. 85:388-394.
Salo, S., H. Ehavald, L. Raaska, R. Vokk, and G. G. Wirtanen. 2006. Microbial surveys in estonian dairies. LWT-Food Sci. Technol. 39: 460-471.
Salo, S., A. Laine, A. Sjöberg, and G. Wirtanen. 2000. Validation of microbiological methods hygicult dipslide, contact plate, and swabbing in surface hygiene control: a Nordic collaborative study. J. AOAC Int. 83:1357-1365.
Schalch, B., M. Trautsch, I. Watkins, P. Kann, and A. Stolle. 2003. Application of a new rapid test for assessing surface cleanliness. Arch. Lebensmittelhyg. 54:58-60.
Thill, A., and O. Spalla. 2003. Aggregation due to capillary forces during drying of particle submonolayers. Colloids Surf. A Physicochem. Eng. Asp. 217:143-151.
Verran, J., P. Airey, A. Packer, and K. A. Whitehead. 2008. Microbial retention on open food contact surfaces and implications for food contamination. Adv. Appl. Microbiol. 64:223-246.
Visser, J. 1995. Particle adhesion and removal: a review. Part. Sci. Technol. 13:169-196.
Werner, S. R. L., J. R. Jones, and A. H. J. Paterson. 2007. Stickiness during drying of amorphous skin-forming solutions using a probe tack test. J. Food Eng. 81:647-656.
Xiao, X., and L. Qian. 2000. Investigation of humidity-dependent capillary force. Langmuir 16:8153-8158.
Zhou, J., G. Pavon-Djavid, F. Anagnostou, and V. Migonney. 2007. Inhibition de l'adhérence de porphyromonas gingivalis sur la surface de titane greffé de poly(styrène sulfonate de sodium). IRBM 28:42-48.