Site-Directed Mutagenesis of the Streptomyces R61 Dd-Peptidase. Catalytic Function of the Conserved Residues around the Active Site and a Comparison with Class-a and Class-C Beta-Lactamases
[en] The importance of various residues in the Streptomyces R61 penicillin-sensitive DD-peptidase has been assessed by site-directed mutagenesis. The replacement of the active Ser62 by a Cys residue yielded an inactive protein which was also unable to recognize penicillin. The activity of the Lys65 → Arg mutant with the peptide and thiol ester substrates was decreased 100-200-fold and the rate of penicillin inactivation was decreased 20 000-fold or more. The mutant thus behaved as a poor, but penicillin-resistant, DD-peptidase. The other studied mutations, the mutations Phe358 → Leu, Tyr90 → Asn, Thr101 → Asn, Phe164 → Ala, Asp225 → Glu and Asp225 → Asn had little influence on the catalytic and penicillin-binding properties. The Asp225 mutants did not exhibit an increased sensitivity to cefotaxime. The Phe164 → Ala mutant was significantly more unstable than the wild-type enzyme.
Research Center/Unit :
CIP - Centre d'Ingénierie des Protéines - ULiège
Disciplines :
Microbiology
Author, co-author :
Hadonou, Ayaovi Medard; Université de Liège - ULiège > Centre d'ingénierie des protéines
Wilkin, Jean-Marc; Université de Liège - ULiège > Centre d'ingénierie des protéines
Varetto, Louis ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Joris, Bernard ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Frère, Jean-Marie ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Language :
English
Title :
Site-Directed Mutagenesis of the Streptomyces R61 Dd-Peptidase. Catalytic Function of the Conserved Residues around the Active Site and a Comparison with Class-a and Class-C Beta-Lactamases
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Adam M., Damblon C., Plaitin B., Christiaens L., Frère J.M. (1990) Chromogenic depsipeptide substrates for β‐lactamases and penicillin‐sensitive DD‐peptidases. Biochem. J. 270:525-529.
Ambler R.P., Coulson A.F.W., Ghuysen J.M., Frère J.M., Joris B., Forsman M., Levesque R.C., Tiraby G., Waley S.G. (1991) A standard numbering scheme for class A β‐lactamases. Biochem. J. 276:269-272.
Bourguignon‐Bellefroid C., Wilkin J.M., Joris B., Aplin R.T., Houssier C., Prendergast F.G., Van Beeumen J., Frère J.M. (1992) Importance of the two tryptophane residues in the Streptomyces R61 DD‐peptidase. Engineering a PBP with a significant β‐lactamase activity. Biochem. J. 282:361-367.
Bourguignon‐Bellefroid C., Joris B., Van Beeumen J., Ghuysen J.M., Frère J.M. (1992) Point mutations of two arginine residues in the Streptomyces R61 DD‐peptidase. Biochem. J. 283:123-128.
Dalbadie‐McFarland G., Cohen L.W., Riggs A.D., Morin C., Itakura K., Richards J.H. (1982) Oligonucleotide‐directed mutagenesis as a general and powerful method for studies of protein function. Proceedings of the National Academy of Sciences 79:6409-6413.
Frère J.M., Joris B. (1985) Penicillin‐sensitive enzymes in peptidoglycan biosynthesis. CRC Crit. Rev. Microbiol. 11:299-396.
Frère J.M., Ghuysen J.M., Perkins H.R., Nieto M. (1973) Kinetics of concomitant transfer and hydrolysis reactions catalysed by the exocellular DD‐carboxypeptidase‐transpeptidase of Streptomyces R61. Biochem. J. 135:483-492.
Frère J.M., Leyh‐Bouille M., Ghuysen J.M., Nieto M., Perkins H.R. (1976) Exocellular DD‐carboxypeptidases‐transpeptidases from Streptomyces. Methods Enzymol. 45:610-636.
Galleni M., Lindberg F., Normark S., Cole S., Honoré N., Joris B., Frère J.M. (1988) Sequence and comparative analysis of three Enterobacter cloacae ampC β‐lactamase genes and their products. Biochem. J. 250:753-760.
Gibson R.M., Christensen H., Waley S.G. (1990) Site‐directed mutagenesis of β‐lactamase I. Single and double mutants of Glu‐166 and Lys‐73. Biochem. J. 272:613-619.
Hadonou A.M., Jamin M., Adam M., Joris B., Dusart J., Ghuysen J.M., Frère J.M. (1992) Importance of the His‐298 residue in the catalytic mechanism of the Streptomyces R61 extracellular DD‐peptidase. Biochem. J. 282:495-500.
Herzberg O. (1991) Refined crystal structure of the β‐lactamase from Staphylococcus aureus PC1 at 2 Å resolution. J. Mol. Biol. 217:701-719.
Imanaka D., Kuroda A., Wang H. (1989) Protein engineering of penicillinase as affinity ligands for bioprocessing. J. Ferment. Bioeng. 67:315-320.
Jamin M., Adam M., Damblon C., Christiaens L., Frère J.M. (1991) Accumulation of acylenzyme in DD‐peptidase catalysed reactions with analogues of peptide substrates. Biochem. J. 280:499-506.
Joris B., Ghuysen J.M., Dive G., Renard A., Dideberg O., Charlier P., Frère J.M., Kelly J.A., Boyington J.C., Moews P.C., Knox J.R. (1988) The active‐site‐serine penicillin‐recognizing enzymes as members of the Streptomyces R61 DD‐peptidase family. Biochem. J. 250:313-324.
Kelly J.A., Dideberg O., Charlier P., Wéry J., Libert M., Moews P.C., Knox J.R., Duez C., Fraipont C., Joris B., Dusart J., Frère J.M., Ghuysen J.M. (1986) On the origin of bacterial resistance to penicillin: comparison of a β‐lactamase and a penicillin target. Science 231:1429-1431.
Kelly J.A., Knox J.R., Zhao H., Frère J.M., Ghuysen J.M. (1989) Crystallographic mapping of β‐lactams bound to a D‐alanyl‐D‐alanine peptidase target enzyme. J. Mol. Biol. 209:281-295.
Knap A.K., Pratt R.F. (1989) Chemical modification of the RTEM‐1 thiol β‐lactamase by thiol‐selective reagents. Evidence for activation of the primary nucleophile of the β‐lactamase active site by adjacent functional groups. Proteins 6:316-323.
Knox J.R., Moews P.C. (1991) β‐Lactamase of Bacillus licheniformis 749/C. Refinement at 2 Å resolution and analysis of hydration. J. Mol. Biol. 220:435-455.
Moews P.C., Knox J.R., Dideberg O., Charlier P., Frère J.M. (1990) β‐Lactamase of Bacillus licheniformis 749/C at 2 Å resolution. Proteins 7:156-171.
Oefner C., Darcy A., Daly J.J., Gubernator K., Charnas R.L., Heinze I., Hubschwerlen C., Winkler F.K. (1990) Refined crystal structure of the β‐lactamase from Citrobacter freundii indicates a mechanism for β‐lactam hydrolysis. Nature 343:284-288.
Samraoui B., Sutton B., Todd R., Artimyuk P., Waley S.G., Phillips D. (1986) Tertiary structural similarity between a class A β‐lactamase and a penicillin‐sensitive D‐alanyl carboxypeptidase‐transpeptidase. Nature 320:378-380.
Sigal I.S., Harwood B.G., Arentzen R. (1982) Thiol β‐lactamase: replacement of the active‐site serine of RTEM β‐lactamase by a cysteine residue. Proc. Natl Acad. Sci. USA 79:7157-7160.
Sigal I.S., De Grado W.F., Thomas B.J., Petteway S.R. (1984) Purification and properties of thiol β‐lactamase. J. Biol. Chem. 259:5327-5332.
Tsukamoto K., Tachibana K., Yamazaki N., Ishii Y., Ujiie K., Nishida N., Sawai T. (1990) Role of lysine 67 in the active site of class C β‐lactamase from Citrobacter freundii GN346. Eur. J. Biochem. 188:15-22.
Tsukamoto K., Kikura R., Ohno R., Sawai T. (1990) Substitution of aspartic acid‐217 of Citrobacter freundii cephalo‐sporinase and properties of the mutant enzymes. FEBS Lett. 264:211-214.
Varetto L., Frère J.M., Nguyen‐Distèche M., Ghuysen J.M., Houssier C. (1987) The pH‐dependence of the active‐site serine DD‐peptidase of Streptomyces R61. Eur. J. Biochem. 162:525-531.
Varetto L., Frère J.M., Ghuysen J.M. (1987) The importance of the negative charge of β‐lactam compounds for the inactivation of the active‐site serine DD‐peptidase of Streptomyces R61. FEBS Lett. 225:218-222.
Zoller M.J., Smith M. (1984) Oligonucleotide‐directed mutagenesis: a simple method using two oligonucleotide primers and a single stranded DNA template. DNA 3:479-488.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.