[en] In most organisms, the main form of thiamine is the coenzyme thiamine diphosphate. Thiamine triphosphate (ThTP) is also found in low amounts in most vertebrate tissues and can phosphorylate certain proteins. Here we show that ThTP exists not only in vertebrates but is present in bacteria, fungi, plants and invertebrates. Unexpectedly, we found that in Escherichia coli as well as in Arabidopsis thaliana, ThTP was synthesized only under particular circumstances such as hypoxia (E. coli) or withering (A. thaliana). In mammalian tissues, ThTP concentrations are regulated by a specific thiamine triphosphatase that we have recently characterized. This enzyme was found only in mammals. In other organisms, ThTP can be hydrolyzed by unspecific phosphohydrolases. The occurrence of ThTP from prokaryotes to mammals suggests that it may have a basic role in cell metabolism or cell signaling. A decreased content may contribute to the symptoms observed during thiamine deficiency.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Makarchikov, Alexander F
Lakaye, Bernard ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie humaine et pathologique
Gulyai, I. E.
Czerniecki, Jan ; Université de Liège - ULiège > Biochimie et physiologie humaine et pathologique
Coumans, Bernard ; Université de Liège - ULiège > CNCM/ Centre fac. de rech. en neurobiologie cell. et moléc.
Wins, Pierre
Grisar, Thierry ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie humaine et pathologique
Bettendorff, Lucien ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie humaine et pathologique
Language :
English
Title :
Thiamine triphosphate and thiamine triphosphatase activities: from bacteria to mammals
Haas R. H. (1988) Thiamin and the brain. Annu. Rev. Nutr. 8: 483-515
Foulon V., Antonenkov V. D., Croes K., Waelkens E., Mannaerts G. P., Van Veldhoven P. P. et al. (1999) Purification, molecular cloning, and expression of 2-hydroxyphytanoyl-CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during alpha-oxidation of 3-methyl-branched fatty acids. Proc. Natl. Acad. Sci. USA 96: 10039-10044
Hazell A. S., Rao K. V., Danbolt N. C., Pow D. V. and Butterworth R. F. (2001) Selective down-regulation of the astrocyte glutamate transporters GLT-1 and GLAST within the medial thalamus in experimental Wernicke's encephalopathy. J. Neurochem. 78: 560-568
Park L. C., Zhang H. and Gibson G. E. (2001) Co-culture with astrocytes or microglia protects metabolically impaired neurons. Mech. Ageing Dev. 123: 21-27
Bettendorff L. and Wins P. (1994) Mechanism of thiamine transport in neuroblastoma cells: inhibition of a high affinity carrier by sodium channel activators and dependence of thiamine uptake on membrane potential and intracellular ATP. J. Biol. Chem. 269: 14379-14385
Dutta B., Huang W., Molero M., Kekuda R., Leibach F. H., Devoe L. D. et al. (1999) Cloning of the human thiamine transporter, a member of the folate transporter family. J. Biol. Chem. 274: 31925-31929
Eudy J. D., Spiegelstein O., Barber R. C., Wlodarczyk B. J., Talbot J. and Finnell R. H. (2000) Identification and characterization of the human and mouse SLC19A3 gene: a novel member of the reduced folate family of micronutrient transporter genes. Mol. Genet. Metab. 71: 581-590
Nosaka K., Kaneko Y., Nishimura H. and Iwashima A. (1993) Isolation and characterization of a thiamin pyrophosphokinase gene, THI80, from Saccharomyces cerevisiae. J. Biol. Chem. 268: 17440-17447
Nosaka K., Onozuka M., Nishino H., Nishimura H., Kawasaki Y.and Ueyama H. (1999) Molecular cloning and expression of a mouse thiamin pyrophosphokinase cDNA. J. Biol. Chem. 274: 34129-34133
Chernikevich I. R, Luchko V. S., Voskoboev A. I. and Ostrovsky Y. M. (1984) Purification and properties of ATP: thiamine diphosphate phosphotranferase from brewer's yeast. Biokhimiya 49: 899-907
Voskoboev A. I. and Luchko V. S. (1980) Isolation and radiometric determination of rat liver ATP: thiamine diphosphate phosphotransferase activity. Vopr. Med. Khim. 26: 564-568.
Shikata H., Koyama S., Egi Y., Yamada K. and Kawasaki T. (1989) Cytosolic adenylate kinase catalyzes the synthesis of thiamin triphosphate from thiamin diphosphate. Biochem. Int. 18: 933-941
Miyoshi K., Egi Y., Shioda T. and Kawasaki T. (1990) Evidence for in vivo synthesis of thiamin triphosphate by cytosolic adenylate kinase in chicken skeletal muscle. J. Biochem. (Tokyo) 108: 267-270
Makarchikov A. F., Wins P., Janssen E., Wieringa B., Grisar T. and Bettendorff L. (2002) Adenylate kinase 1 knockout mice have normal thiamine triphosphate levels. Biochim. Biophys. Acta 1592: 117-121
Nghiêm H. O., Bettendorff L. and Changeux J. P. (2000) Specific phosphorylation of Torpedo 43K rapsyn by endogenous kinase(s) with thiamine triphosphate as the phosphate donor. FASEB. J 14: 543-554
Gautam M., Noakes P. G., Mudd J., Nichol M., Chu G. C., Sanes J. R. et al. (1995) Failure of postsynaptic specialization to develop at neuromuscular junctions of rapsyn-deficient mice. Nature 377: 232-236
Bettendorff L. (1994) The compartmentation of phosphorylated thiamine derivatives in cultured neuroblastoma cells. Biochim. Biophys. Acta 1222: 7-14
Bettendorff L., Wins P. and Lesourd M. (1994) Subcellular localization and compartmentation of thiamine derivatives in rat brain. Biochim. Biophys. Acta 1222: 1-6
Lakaye B., Makarchikov A. Fernandes Antunes A. F., Zorzi W., Coumans B., De Pauw E. et al. (2002) Molecular characterization of a specific thiamine triphosphatase widely expressed in mammalian tissues. J. Biol. Chem. 277: 13771-13777
Yusa T. (1961) Thiamine triphosphate in yeasts and some plant materials. Plant Cell Physiol. 2: 471-474
Bettendorff L. and Wins P. (1999) Thiamine derivatives in excitable tissues: metabolism, deficiency and neurodegenerative diseases. Recent Res. Dev. Neurochem 2: 37-62
Bettendorff L., Peeters M., Jouan C., Wins P. and Schoffeniels E. (1991) Determination of thiamin and its phosphate esters in cultured neurons and astrocytes using an ion-pair reversed-phase high-performance liquid chromatographic method. Anal. Biochem. 198: 52-59
Peterson G. L. (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem. 83: 346-356
BettendorffL., Peeters M., Wins P. and Schoffeniels E. (1993) Metabolism of thiamine triphosphate in rat brain: correlation with chloride permeability. J. Neurochem 60: 423-434
Makarchikov A. F. and Chernikevich I. P. (1992) Purification and characterization of thiamine triphosphatase from bovine brain. Biochim Biophys. Acta 1117: 326-332
Sapru M. K., Geetha H. and Shetty K. T. (1987) A single reagent method of phosphate estimation in phosphatase(s) assay. Ind. J. Biochem. Biophys. 24: 340-343
Shimizu M., Yoshida T., Toda T., Iwashima A. and Mitsunaga T. (1996) Isolation of a thiamine-binding protein from rice germ and distribution of similar proteins. Biosci. Biotech. Biochem 60: 453-457
Watanabe K., Takahashi H.and Mitsunaga T. (2001) Cloning and sequence analysis of cDNA encoding thiamin-binding proteins from sesame seeds. Physiol. Plant 112: 546-551.
Veech R. L., Lawson J. W. R., Cornell N. W. and Krebs H. A. (1979) Cytosolic phosphorylation potential. J. Biol. Chem. 254: 6538-6547
Bettendorff L., Michel-Cahay C., Grandfils C., De Rycker C. and Schoffeniels E. (1987) Thiamine triphosphate and membrane-associated thiamine phosphatases in the electric organ of Electrophorus electricus. J. Neurochem 49: 495-502
Egi Y., Koyama S., Shikata H., Yamada K. and Kawasaki T. (1986) Content of thiamin phosphate esters in mammalian tissues - an extremely high concentration of thiamin triphosphate in pig skeletal muscle. Biochem. Int. 12: 385-390
Nishimune T. and Hayashi R. (1987) Hydrolysis and synthesis of thiamin triphosphate in bacteria. J. Nutr. Sci. Vitaminol. (Tokyo) 33: 113-127
Murai A. and Katsura E. (1975) Thiamine triphosphatase activity of myosin and accelerating effect of thiamine di- and triphosphates on superprecipitation of actomyosin. J. Nutr. Sci. Vitaminol. (Tokyo) 21: 169-181
Nishimune T., Ito S., Abe M., Kimoto M. and Hayashi R. (1987) Nucleoside-triphosphatase and hydrolysis of thiamin triphosphate in Escherichia coli. Biochim. Biophys. Acta 923: 74-82
Penttinen H. K. and Uotila L. (1981)The relation of the soluble thiamine triphosphatase activity of various rat tissues to non-specific phosphatases. Med. Biol. 59: 177-184
Iyer L. M. and Aravind L. (2002) The catalytic domains of thiamine triphosphatase and CyaB-like adenylyl cyclase define a novel superfamily of domains that bind organic phosphates. BMC Genomics 3: 33
Sismeiro O., Trotot P., Biville F., Vivares C. and Danchin A. (1998) Aeromonas hydrophila adenylyl cyclase 2: a new class of adenylyl cyclases with thermophilic properties and sequence similarities to proteins from hyperthermophilic archaebacteria. J. Bacteriol. 180: 3339-3344.
Koshibe N., Yusa T. and Hayashi K. (1963) Occurrence of thiamine triphosphate in higher plants. Plant Cell Physiol. 4: 239-242
Rossi-Fanelli A., Siliprandi N. and Fasella P. (1952) On the presence of triphosphothiamine (TPT) in the liver. Science 116: 711-713
Woese C. R., Kandler. O. and Wheels M. L. (1990) Towards a natural system of organism: proposal for the domains Archea, Bacteria and Eucarya. Proc. Natl. Acad. Sci. USA 87: 4576-4579
Margulis L. (1996) Archaeal-eubacterial mergers in the origin of Eukarya: phylogenetic classification of life. Proc. Natl. Acad. Sci. USA 93: 1071-1076
Hashitani Y. and Cooper J. R. (1972) The partial purification of thiamine triphosphatase from rat brain. J. Biol. Chem. 247: 2117-2119
Barchi R. L. and Braun P. E. (1972) A membrane-associated thiamine triphosphatase from rat brain: properties of the enzyme. J. Biol. Chem. 247: 7668-7673
Wang J. J.-L., Hua Z., Fentress H. M. and Singleton C. K. (2000) JNK1 is inactivated during thiamine deficiency-induced apoptosis in human neuroblastoma cells. J. Nutr. Biochem. 11: 208-215
Mironov A. S., Gusarov I., Rafikov R., Lopez L. E., Shatalin K., Kreneva R. A. et al. (2002) Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 111: 747-756
Winkler W., Nahvi A. and Breaker R. R. (2002) Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419: 952-956