Charlier, Paulette ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Coyette, Jacques ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Dehareng, Dominique ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Dive, Georges ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Duez, Colette ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Dusart, Jean; Université de Liège - ULiège
Fonzé, Eveline; Université de Liège - ULiège
Fraipont, Claudine ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Frère, Jean-Marie ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Galleni, Moreno ; Université de Liège - ULiège > Département des sciences de la vie > Macromolécules biologiques
Goffin, Colette ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Joris, Bernard ; Université de Liège - ULiège > Département des sciences de la vie > Physiologie et génétique bactériennes - Centre d'ingénierie des protéines
Lamotte-Brasseur, Josette ; Université de Liège - ULiège > Unité de cristallographie - Centre d'ingénierie des protéines
Van Heijenoort J. Biosynthesis of the bacterial peptidoglycan unit. In: Ghuysen JM, Hakenbeck R, eds. Bacterial cell wall. Amsterdam: Elsevier, 1994: 39-54.
Ghuysen JM. Molecular structures of penicillin-binding proteins and β-lactamases. Trends Microbiol 1994; 2: 372-30.
Vicente M, Errington J. Structure, function and control in microbial division. Mol Microbiol 1996; 20: 1-7.
Berger-Bāchi B. Expression of resistance to methicillin. Trends Microbiol 1994; 2: 389-93.
Joris B, Hardt K, Ghuysen JM. Induction of β-lactamase and low-affinity penicillin-binding protein 2' synthesis in Gram-positive bacteria. In: Ghuysen JM, Hakenbeck R, eds. Bacterial cell wall. Amsterdam: Elsevier, 1994: 505-15.
Zorzi W, Zhou XY, Dardenne O, Lamotte J, Raze D, Pierre J, Gutmann L, Coyette J. Structure of the low-affinity penicillin-binding protein 5, PBP5fm, in wild-type and hignly penicillin-resistant strains of Enterococcus faecium. J Bacteriol 1996; 178: 4948-57.
Frère JM. β-Lactamases and bacterial resistance to antibiotics. Mol Microbiol 1995; 16: 385-95.
Bush K. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 1995; 39: 1211-33.
Schulz GE. Structure function rejationship in porins as derived from a 1.8 A resolution crystal structure. In: Ghuysen JM, Hakenbeck R, eds. Bacterial cell wall. Amsterdam: Elsevier, 1994: 343-62.
Benz R. Uptakes of solutes through bacterial outer membranes. In: Ghuysen JM, Hakenbeck R, eds. Bacterial cell wall. Amsterdam: Elsevier, 1994: 397-423.
Nikaido H. Role of permeability barrier in resistance to B-lactam antibiotics. Pharmacol Ther 1989; 27: 197-231.
Trias J, Dufresne J, Levesque RC, Nikaido H. Decreased outer membrane permeability in imipenem-resistant mutants in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1990; 33: 1201-6.
Chamber HF, Moreau D, Yajho D, Müch C, Wagner C, Hackbarth C, Kocagöz S, Rosenberg E, Hardley WK, Nikaido H. Can penicillins and other β-lactam antibiotics be used to treat tuberculosis. Antimicrob Agents Chemother 1995; 39: 2620-4.
Quinting B, Reyrat JR, Monnaie D, Amicosante G, Pelicic V, Gicquel B, Frère JM, Galleni M. Contribution of β-lactamase production to the resistance of mycobacteria to β-lactam antibiotics. FEBS Lett 1997; 406: 275-8.
Li XZ, Nikaido H, Poole K. Role of MexA-MexB-OrpM in antibiotic efflux in Pseudomonas aeruginoia. Antimicrob Agents Chemother 1995; 39: 1948-53.
Nikaido H, Normark S. Sensitivity of Escherichia coli to various β-lactams is determined by the interplay or outer membrane permeability and degradation by periplasmic β-lactamases: a quantitative predictive treatment. Mol Microbiol 1987; 1: 29-36.
Frère JM. Quantitative relationship between sensitivity to β-lactam antibiotics and β-lactamase production in Gram-negative bacteria. Biochem Pharmacol 1989; 38: 1415-26.
Frère JM, Joris B. Penicillin-sensitive enzymes in peptidoglycan biosynthesis. CRC Crit Rev Microbiol 1985; 11: 299-396.
Yang Y, Wu P, Livermore DM. Biochemical characterization of a β-lactamase that hydrolyses penems and carbapenems from two Serratia marcescens isolates. Antimicrob Agents Chemother 1990; 34: 755-8.
Hechler U, Van den Weghe M, Martin HH, Frère JM. Overproduced β-lactamase and the outer membrane barrier as resistance factors in Serratia marcescens highly resistant to β-lactamase stable β-lactam antibiotics. J Gen Microbiol 1989; 135: 1275-90.
Jacobs C, Frère JM, Normark S. Cytosolic intermediates for cell wall biosynthesis and degradation control inducible β-lactam resistance in Gram-negative bacteria. Cell 1997; 88: 823-32.
Bush K, Jacoby G. Nomenclature of TEM β-lactamases. J Antimicrob Chemother 1997; 39: 1-3.
Danel F, Hall LMC, Gur D, Livermore DM. OXA-15, an extended-spectrum variant of OXA-2 β-lactamase, isolated from a Pseudomonas aerginosa strain. Antimicrob Agents Chemother 1997; 41: 785-90.
Sirot D, Recule C, Chaibi EB, Bret L, Croize J, Chanal-Claris C, Labia R, Sirot J. A complex mutant of TEM-1 β-lactamase with mutations encountered in both IRT-4 and extended-spectrum TEM-15, produced by an Escherichia coli clinical isolate. Antimicrob Agents Chemother 1997; 41: 1322-5.
Hardt K, Joris B, Lepage S, Brasseur R, Lampen JO, Frère JM, Fink AL, Ghuysen JM. The penicillin sensory transducer, BlaR, involved in the inducibility of β-lactamase synthesis in Bacillus licheniformis is embedded in the plasma membrane via a four α-helix bundle. Mol Microbiol 1997; 23: 935-44.
Lenzini VM, Magdalena J, Fraipont C, Joris B, Matagne A, Dusart J. Induction of a Streptomyces cacaoi β-lactamase gene cloned in S. lividans. Mol Gen Genet 1992; 235: 41-8.
Magdalena J, Joris B, Van Beeumen J, Brasseur R, Dusart J. Regulation of the β lactamase BlaL of Streptamyces cacaoi: the product of the blaB regulatory gene is an internal membrane-bound protein, Biochem J 1995; 311: 155-60.
Jacobs C, Huang LJ, Bartowsky E, Normark S, Park JT. Bacterial cell wall recycling provides cytosolic muropeptides as effectors for β-lactamase induction. EMBO J 1994; 13: 4684-94.
Kelly JA, Dideberg O, Charlier P, Wéry JP, Libert M, Moews PC, Knox JR, Duez C, Fraipont C, Joris B, Dusart J, Frère JM, Ghuysen JM. On the origin of bacterial resistance to penicillins. Science 1986; 231: 1429-31.
Knox JR, Moews PC, Frère JM. Molecular evolution of bacterial β-lactam resistance. Chem Biol 1996; 3: 937-47.
Pares S, Mouz N, Petillot Y, Hakenbeck R, Dideberg O. X-Ray structure of Streptococcus pneumoniae PBP2x, a primary penicillin target enzyme. Natl Struct Biol 1996; 3: 284-9.
Carfi A, Pares S, Duée E, Galleni M, Duez C, Frère JM, Dideberg O. The 3-D structure of a zinc-metallo β-lactamase from Bacillus cereus reveals a new type of protein fold. EMBO J 1995; 14: 4914-21.
Concha NO, Rasmussen BA, Bush K, Herzberg O. Crystal structure of the wide spectrum binuclear zinc β-lactamase from Bacteroides fragilis. Structure 1996; 4: 823-36.
Ghuysen JM, Dive G. Biochemistry of the penicilloyl serine transferases. In: Gnuysen JM, Hakenbeck R, eds. Bacterial cell wall. Amsterdam: Elsevier, 1994: 103-29.
Culot P, Dive G, Nguyen VH, Ghuysen JM. A quasi-Newton algorithm for first-order saddle-point location. Theoret Chim Acta 1992; 82: 189-205.
Dive G, Dehareng D, Ghuysen JM. A detailed study of a molecule into a molecule : the N-acetyl-L-tryptophanamide in an active site model of the α-chymotrypsin. J Am Chem Soc 1994; 116: 2548-66.
Dive G, Dehareng D, Peeters D. Proposition for the acylation mechanism of the serine proteases: a one step process ? Int J Quant Chem 1996; 58: 85-107.