Urban Digital Twin; Building Energy Simulation; Modelica model; Integration; CityJSON
Abstract :
[en] Abstract. Urban Digital Twins (UDTs) and Urban Building Energy Models (UBEMs) are increasingly used to support energy scenario analysis for building retrofits, greenhouse gas emissions reduction, district energy planning, and climate resilience strategies. However, the integration of these technologies is often hindered by data format incompatibilities, limited automation, and insufficient visualization capabilities. This research presents a modular, web-based framework that couples a dynamic Building Energy Simulation (BES) model with a UDT platform using lightweight, standards-compliant formats (e.g., CityJSON). The proposed workflow enables both automated and semi-automated processes, facilitating the visualization of simulation results such as heating demand at both building and district levels. Heating demand and other simulation results are integrated and visualized through an intuitive client-side interface, offering spatial and attribute filtering at multiple scales. The system supports user-provided data and integrates it into an intuitive client interface, enabling spatial filtering, attribute querying, and interactive analysis. Key contributions include the development of preprocessing workflows for data compatibility, integration structuration for simulation outputs, multi-scale visualization capabilities, and analytical tools for what-if scenario analysis. By bridging theoretical modeling frameworks with practical, standards-compliant deployment, this work advances the convergence of geospatial and energy modeling, providing a scalable and interactive tool for energy-aware urban planning. This coupling establishes a bidirectional feedback loop, where UDTs supply detailed 3D geometries, and UBEMs provide predictive energy insights, transforming digital twins into robust decision-support systems.
Research Center/Unit :
Geospatial Data Science and City Information Modeling - GeoScITY- Geomatics Unit
Disciplines :
Energy Engineering, computing & technology: Multidisciplinary, general & others Computer science Mathematics Architecture
Roquet, Mazarine ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Oudadda, Yassine
Hajji, Rafika ; Université de Liège - ULiège > Département de géographie > Geospatial Data Science and City Information Modelling (GeoScITY)
Dewallef, Pierre ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Systèmes de conversion d'énergie pour un dévelopement durable
Billen, Roland ; Université de Liège - ULiège > Département de géographie > Geospatial Data Science and City Information Modelling (GeoScITY)
Language :
English
Title :
A Lightweight Framework for Seamless Integration of Building Energy Simulations into Urban Digital Twins
Alternative titles :
[fr] Une chaîne de traitement légère pour l’intégration transparente des simulations énergétiques du bâtiment dans les jumeaux numériques urbains
Original title :
[en] A Lightweight Framework for Seamless Integration of Building Energy Simulations into Urban Digital Twins
Publication date :
18 September 2025
Journal title :
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
This research is part of the project GIS 3.0 that demonstrates the convergence of Geographic Information Systems and Web 3.0: Semantic Web techniques, object-oriented prototype languages (JavaScript, JSON,) and document-oriented NoSQL databases. The research project (PDR) is funded by the Belgian National Funds for Scientific Research FNRS_2019_SIG3.0_PDR/OL T.0024.20.
Agugiaro, G., Benner, J., Cipriano, P., Nouvel, R., 2018. The Energy Application Domain Extension for CityGML: enhancing interoperability for urban energy simulations. Open geospatial data, softw. stand. 3, 2. https://doi.org/10.1186/s40965-018-0042-y
Alva, P., Biljecki, F., Stouffs, R., 2022. USE CASES FOR DISTRICT-SCALE URBAN DIGITAL TWINS. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLVIII-4/W4-2022, 5–12. https://doi.org/10.5194/isprs-archives-XLVIII-4-W4-2022-5-2022
Alva, P., Mosteiro Romero, M., Stouffs, R., 2024. Estimating Operational Greenhouse Gas Emissions in the Built Environment using an Urban Digital Twin: Sustainable City Management Tool for Decarbonisation of Cities.
Coors, V., Padsala, R., 2024. Urban Digital Twins Empowering Energy Transition: Citizen-Driven Sustainable Urban Transformation towards Positive Energy Districts. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLVIII-4-W10-2024, 51–56. https://doi.org/10.5194/isprs-archives-XLVIII-4-W10-2024-51-2024
Fonseca, J.A., Schlueter, A., 2015. Integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts. Applied Energy 142, 247–265. https://doi.org/10.1016/j.apenergy.2014.12.068
Gebetsroither-Geringer, E., Padsala, R., Hainoun, A., Agugiaro, G., Biernat, S., Reber, A., Smetschka, B., Gao, W., Horak, D., Falay, B., Coors, V., 2025. A Participatory Planning Framework using Urban Digital Twins Supporting the Co-Creation of Flexible, Positive Energy Districts.
Hong, T., Chen, Y., Luo, X., Luo, N., Lee, S.H., 2020. Ten questions on urban building energy modeling. Building and Environment 168, 106508. https://doi.org/10.1016/j.buildenv.2019.106508
Jeddoub, I., Nys, G.-A., Hajji, R., Billen, R., 2024. Data integration across urban digital twin lifecycle: a comprehensive review of current initiatives. Annals of GIS 0, 1–20. https://doi.org/10.1080/19475683.2024.2416135
Jorissen, F., Reynders, G., Baetens, R., Picard, D., Saelens, D., Helsen, L., 2018. Implementation and verification of the IDEAS building energy simulation library. Journal of Building Performance Simulation 11, 669–688. https://doi.org/10.1080/19401493.2018.1428361
Michael, A., Heracleous, C., 2017. Assessment of natural lighting performance and visual comfort of educational architecture in Southern Europe: The case of typical educational school premises in Cyprus. Energy and Buildings 140, 443–457. https://doi.org/10.1016/j.enbuild.2016.12.087
Nouvel, R., Brassel, Bruse, Duminil, E., Coors, V., Eicker, Robinson, 2015. SIMSTADT, a New Worflow-driven Urban Energy Simulation Platform for CityGML City Models.
Rafamatanantsoa, B.P., Jeddoub, I., Yarroudh, A., Hajji, R., Billen, R., 2024. City2Twin: an open urban digital twin from data integration to visualization and analysis. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLVIII-2-W8-2024, 387–394. https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-387-2024
Reinhart, C.F., Cerezo Davila, C., 2016. Urban building energy modeling – A review of a nascent field. Building and Environment 97, 196–202. https://doi.org/10.1016/j.buildenv.2015.12.001
Remmen, P., Lauster, M., Mans, M., Fuchs, M., Osterhage, T., Müller, D., 2018. TEASER: an open tool for urban energy modelling of building stocks. Journal of Building Performance Simulation 11, 84–98. https://doi.org/10.1080/19401493.2017.1283539
Rossknecht, M., Santhanavanich, T., Hilaire, L., Padsala, R., Dabirian, S., Eicker, U., Saad, M., Jacovella-St-Louis, J., 2023. TESTBED-18: Building Energy Data Interoperability Engineering Report.
Santhanavanich, T., Padsala, R., Würstle, P., Coors, V., 2022. The spatial data infrastructure of an urban digital twin in the building energy domain using ogc standards. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. X-4/W2-2022, 249–256. https://doi.org/10.5194/isprs-annals-X-4-W2-2022-249-2022
Tufan, Ö., 2022. Development and Testing of the CityJSON Energy Extension for Space Heating Demand Calculation.
Weiß, D., Tribulowski, K., Hirth, S., Hirsch, H., 2024. Case Studies On The Application Of Building Simulation Software SIM-VICUS Within The Real Planning Process. E3S Web of Conf. 562, 10001. https://doi.org/10.1051/e3sconf/202456210001