[en] Filtering involves estimating the state of a dynamic system by integrating noisy observations with mathematical models. While the Extended Kalman Filter (EKF) is widely used for nonlinear problems, it often neglects the geometric structure and symmetries inherent in many systems. The Invariant Extended Kalman Filter (IEKF) addresses this limitation by leveraging these geometric properties for improved estimation performance. This work provides a comprehensive introduction to the invariant filtering framework, using the illustrative example of estimating the pose of an IMU constrained to pendular motion. It demonstrates that kinematic constraints can be effectively modeled as noise-free pseudo-measurements within this framework. Additionally, we propose an Iterated IEKF, inspired by the Gauss-Newton algorithm, to ensure that all estimated states adhere to the imposed constraints. These methods offer a pathway to generalizing the invariant framework for estimating extended poses in multibody systems.
Disciplines :
Mechanical engineering
Author, co-author :
Goffin, Sven ; Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Barrau, Axel
Bonnabel, Silvère; Mines Paris - PSL > Mathématiques & Systèmes > Centre de Robotique
Bruls, Olivier ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire des Systèmes Multicorps et Mécatroniques
Sacré, Pierre ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Robotique intelligente
Language :
English
Title :
A Tutorial on the Invariant Filtering Framework
Publication date :
July 2025
Number of pages :
2
Event name :
12th ECCOMAS Thematic Conference on Multibody Dynamics