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EXTENDED ABSTRACT

1 Introduction

Filtering is the process of estimating the state of a dynamic system from noisy measurements by combining observed data
with a mathematical model of the system. Developed during the Apollo program in the 1960s, the Extended Kalman Filter
(EKF) remains the most widely used filter for industrial nonlinear filtering problems today [1]. It extends the linear Kalman
filter methodology to linearized system equations. While being straightforward, this approach does not leverage the geometric
structure or symmetries inherent in many systems. This limitation has led to the development of geometric filtering methods.
Among these methods, the Invariant Extended Kalman Filter (IEKF) has gained significant popularity in the past two decades,
with notable industrial successes [2]. The IEKF offers improved convergence properties for systems that are group affine and/or
involve observations expressed in invariant form—characteristics commonly found in attitude and pose estimation tasks [3, 4].

In mechanical systems, the state is often constrained within a specific subspace of the state space. For example, a pendulum
consisting of a rigid bar of length L is constrained to move along a circular arc of radius L centered on its pivot point. Incorpo-
rating such constraints into a probabilistic filtering framework remains a challenging task. For nonlinear constraints, a common
approach involves (re)projecting the estimated state onto the constrained subspace [5]. However, this method introduces some
arbitrariness in how the projection is performed and offers no guarantees of consistency with the underlying estimation problem.

This work provides a comprehensive introduction to the invariant filtering framework. To make the concepts more accessible,
we focus on the concrete problem of estimating the extended pose—including orientation, velocity, and position—of an inertial
measurement unit (IMU) mounted on a pendulum. Alongside presenting the general theory of the IEKF, we propose a systematic
method to effectively integrate kinematic constraints within the framework.

2 About the Invariant Kalman Framework

Let G be a matrix Lie group G ⊂ MN(R) of dimension n. The invariant framework is designed to estimate the state χχχk ∈ G of
nonlinear dynamical systems of the following form:

χχχk+1 = f(χχχk,uk)expG(wk), (1a)
yk = χχχkdk +nk, (1b)

where uk ∈ Rb is the system input, dk ∈ RN , wk ∼ N (0,Qk) and nk ∼ N (0,Nk) are respectively the process and measurement
noise, f is a nonlinear function, and expG(·) is the exponential map of group G. The IEKF proceeds recursively through two main
steps: the propagation, that propagates the state estimate through the system dynamics (1a), and the update, that refines it using
incoming measurements (1b). Depending on whether group composition involves left or right multiplication, the IEKF can be
formulated using either the left or right formalism. For conciseness, we focus on the left formalism.

In the left-invariant formalism, the state uncertainty is modeled as a concentrated Gaussian distribution on G [6]:

χχχk = χ̂χχk expG(ξξξ k), with ξξξ k ∼ N (0,Pk), (2)

where χ̂χχk is the state estimate and Pk is the covariance of the linearized error ξξξ ∈Rn. The pair (χ̂χχ,P) represents the filter estimate.

If the function f in (1a) is group affine, as defined in Equation (11) of [2], its Jacobian Fk with respect to the linearized error is
entirely independent of the current state estimate and wholly encodes the nonlinear nature of f in the absence of process noise,
as if the dynamics were linear. This property is called log-linearity and holds for a wide range of problems in attitude and pose
estimation [3]. A similar property holds for measurements of the form (1b). Indeed, when a new measurement is received, the
IEKF updates its estimate using the innovation:

zk = χ̂χχ
−1
k yk −dk = expG(ξξξ k)dk −dk = Hkξξξ k +O(∥ξξξ k∥2), (3)

where the output Jacobian Hk is entirely independent of χ̂χχk. This stands in sharp contrast to the EKF framework, where Hk
depends on the current state estimate. These key properties grant the IEKF its strong convergence characteristics [2].



3 Handling Kinematic Constraints within the Invariant Filtering Framework

Consider the illustrative task of estimating the extended pose of a pendulum equipped with an IMU. The system consists of a
mass m attached to a rigid bar of length L, which swings around a spherical joint. An inertial frame, denoted as FI , is placed at
the pendulum’s joint, while the frame attached to the IMU is referred to as Fs. The extended pose of the IMU is defined as

χχχk =

 Rk vk pk
01×3 1 0
01×3 0 1

 ∈ SE2(3), (4)

where Rk is the rotation matrix from the IMU frame Fs to the inertial frame FI , and vk,pk ∈ R3 represent the IMU’s velocity and
position vectors in FI , respectively. The notation SE2(3) refers to the matrix Lie group of extended poses [3]. Assuming no prior
knowledge about the motion and neglecting biases, the general dynamics of χχχk follows a group affine structure and writes

Rk+1 = Rk expG((ωωωk +wωωω
k )dt), vk+1 = vk +(Rk(ak +wa

k)+g) dt, pk+1 = pk +vk dt, (5)

where the angular velocity ωωωk and linear acceleration ak measured by the IMU are treated as inputs to the dynamical system.

The spherical joint imposes translational constraints on the motion of the pendulum’s suspension point. Mathematically, this
constraint is represented as

pk +Rka = 0, (6)

where a is the known position of the spherical joint in frame Fs. Expression (6) provides exact information about the IMU’s pose.
We advocate this constraint can be treated as a noise-free pseudo-measurement in the invariant framework. Specifically, it can be
reformulated as

χχχk

a
0
1

=

[
0
1

]
, (7)

which has the same invariant form as measurement (1b) when the noise is turned off. This formulation ensures the independence
of the output Jacobian Hk, allowing the kinematic constraint to be incorporated during the update step while preserving the filter’s
convergence properties.

Incorporating exact information as noise-free pseudo-measurements introduces several challenges in the Kalman methodology,
such as instabilities in the Kalman gain computation and inconsistencies in the update, as discussed in [7]. To address these
issues, we propose an enhancement of the IEKF update inspired by the Gauss-Newton algorithm, resulting in the Iterated IEKF.
This iterative algorithm ensures that the estimated state’s probability distribution remains entirely within the constrained state
space, thereby excluding all states that violate the imposed constraints.

4 Conclusion and Perspective

We demonstrated how to effectively incorporate kinematic constraints from a spherical joint into the invariant framework. By
using a pertinent model for the extended pose of a multibody system, we believe that the invariant framework can be generalized
to estimate the poses of such systems. In this context, the kinematic constraints that connect the individual body parts can be
treated as pseudo-measurements. This promising direction is currently the focus of ongoing research in our lab.
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