[en] The world is facing challenges in terms of environmental sustainability and rising costs. In this context, miniaturized equipment such as microfluidic devices can be used to manipulate small volumes of fluids in micrometer-sized channels incorporating multiple components such as pumps, valves and mixers. Due to their high flexibility, these devices can provide sustainable alternatives to traditional platforms. The present study focuses on the design of a user-friendly and reliable microfluidic capillary electrophoresis chip for pharmaceutical applications. To meet pharmaceutical requirements in terms of quantification performance and overcome the injection variability usually observed with such microfluidic systems, a reliable and reproducible design for hydrodynamic injection using passive valves has been developed. It has been successfully used for synthetic cathinone analysis.
Research Center/Unit :
CIRM - Centre Interdisciplinaire de Recherche sur le Médicament - ULiège
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Dispas, Amandine ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Emonts, Paul ; Université de Liège - ULiège > Département de pharmacie > Analyse des médicaments
Nys, G., Fillet, M., Microfluidics contribution to pharmaceutical sciences: from drug discovery to post marketing product management. J. Pharm. Biomed. 159 (2018), 348–362, 10.1016/j.jpba.2018.07.011.
Štěpánová, S., Kašička, V., Recent developments and applications of capillary and microchip electrophoresis in proteomics and peptidomics. J. Sep. Sci., 46, 2023, e2300043, 10.1002/jssc.202300043.
Farideh, H., Zahra, T., Sanati, N.Amir, Towards fully integrated liquid chromatography on a chip: evolution and evaluation. TrAC 105 (2018), 302–337, 10.1016/j.trac.2018.05.002.
Wang, Z., Li, M., Xu, S., Sun, L., Li, L., High-throughput relative quantification of fatty acids by 12-plex isobaric labeling and microchip capillary electrophoresis - mass spectrometry. Anal. Chim. Acta, 1318(22), 2024, 342905, 10.1016/j.aca.2024.342905.
Culberston, C.T., Mickleburgh, T.G., Stewart-James, S.A., Sellesn, K.A., Pressnall, M., Micro total analysis systems: fundamental advances and biological applications. Anal. Chem. 86 (2014), 95–118, 10.1021/ac403688g.
Ai, Y., Zhang, F., Wang, C., Xie, R., Liang, Q., Recent progress in lab-on-a-chip for pharmaceutical analysis and pharmacological/toxicological test. TrAC 117 (2019), 215–230, 10.1016/j.trac.2019.06.026.
Vargas Medina, D.A., Soares Maciel, E.V., Lanças, F.Mauro, Miniaturization of liquid chromatography coupled to mass spectrometry. A. Achievements on chip-based LC-MS devices. TrAC, 131, 2020, 116003.
Haghighi, F., Talebpour, Z., Sanati Nezhad, A., Towards fully integrated liquid chromatography on a chip: evolution and evaluation. TrAC 105 (2018), 302–337, 10.1016/j.trac.2018.05.002.
Felhofer, J.L., Blanes, L., Garcia, C.D., Recent developments in instrumentation for capillary electrophoresis and microchip-capillary electrophoresis. Electrophoresis 31 (2010), 2469–2486, 10.1002/elps.201000203.
Lewis, A.P., Cranny, A., Harris, N.R., Green, N.G., Wharton, J.A., Wood, R.J.K., Stokes, K.R., Review on the development of truly portable and in-situ capillary electrophoresis systems. Meas. Sci. Technol., 24, 2013, 042001, 10.1088/0957-0233/24/4/042001.
Karlinsey, J.M., Sample introduction techniques for microchip electrophoresis: a review. Anal. Chim. Acta 725 (2012), 1–13, 10.1016/j.aca.2012.02.052.
Saito, R., Coltro, W., De Jesus, D., Instrumentation design for hydrodynamic sample injection in microchip electrophoresis: a review. Electrophoresis 33 (2012), 2614–2623, 10.1002/elps.201200089.
Karlinsey, J.M., Sample introduction techniques for microchip electrophoresis: a review. Anal. Chim. Acta 725 (2012), 1–13, 10.1016/j.aca.2012.02.052.
Sahore, V., Kumar, S., Rogers, C.I., Jensen, J.K., Sonker, M., Woolley, A.T., Pressure-actuated microfluidic devices for electrophoretic separation of pre-term birth biomarkers. Anal. Bioanal. Chem. 408 (2016), 599–607, 10.1007/s00216-015-9141-0.
Wang, W., Zhou, F., Zhao, L., Zhang, J.R., Zhu, J.J., Improved hydrostatic pressure sample injection by tilting the microchip towards the disposable miniaturized CE device. Electrophoresis 29 (2008), 561–566, 10.1002/elps.200700207.
Ito, T., Inoue, A., Sato, K., Hosokawa, K., Maeda, M., Autonomous polymer loading and sample injection for microchip electrophoresis. Anal. Chem. 77 (2005), 4759–4764, 10.1021/ac050122f.
Lee, N.Y., Yamada, M., Seki, M., Pressure-driven sample injection with quantitative liquid dispensing for on-chip electrophoresis. Anal. Sci. 20 (2004), 483–487, 10.2116/analsci.20.483.
Lee, N.Y., Yamada, M., Seki, M., Control-free air vent system for ultra-low volume sample injection on a microfabricated device. Anal. Sci. 21 (2005), 465–468, 10.2116/analsci.21.465.
Emonts, P., Avohou, H.T., Hubert, P., Ziemons, E., Fillet, M., Dispas, A., Optimization of a robust and reliable FITC labeling process for CE-LIF analysis of pharmaceutical compounds using design of experiments strategy. J. Pharm. Biomed. Anal., 205, 2021, 114304, 10.1016/j.jpba.2021.114304.
Shah, J.J., Geist, J., Locascio, L.E., Gaitan, M., Rao, M.V., Vreeland, W.N., Surface modification of poly(methyl methacrylate) for improved adsorption of wall coating polymers for microchip electrophoresis. Electrophoresis 27 (2006), 3788–3796, 10.1002/elps.200600118.
Emonts, P., Servais, A.-C., Ziemons, E., Hubert, P., Fillet, M., Dispas, A., Development of a sensitive MEKC LIF method for synthetic cathinones analysis. Electrophoresis 42 (2021), 1127–1134, 10.1002/elps.202000331.
Dispas, A., Emonts, P., Fillet, M., Microchip electrophoresis: a suitable analytical technique for pharmaceuticals quality control? A critical review. TrAC, 139, 2021, 10.1016/j.trac.2021.116266.
Zeid, A.M., Kaji, N., Nasr, J.J.M., Belal, F.F., Baba, Y., Walash, M.I., Stacking-cyclodextrin-microchip electrokinetic chromatographic determination of gabapentinoid drugs in pharmaceutical and biological matrices. J. Chromatogr. A 1503 (2017), 65–75, 10.1016/j.chroma.2017.04.049.
Qin, J., Leung, F.C., Fung, Y., Zhu, D., Lin, B., Rapid authentication of ginseng species using microchip electrophoresis with laser-induced fluorescence detection. Anal. Bioanal. Chem. 381 (2005), 812–819, 10.1007/s00216-004-2889-2.
Huang, F.C., Chen, Y.F., Bin Lee, G., CE chips fabricated by injection molding and polyethylene/thermoplastic elastomer film packaging methods. Electrophoresis 28 (2007), 1130–1137, 10.1002/elps.200600351.
Zeid, A.M., Nasr, J.J.M., Belal, F., Walash, M.I., Baba, Y., Kaji, N., Determination of three antiepileptic drugs in pharmaceutical formulations using microfluidic chips coupled with light-emitting diode induced fluorescence detection. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 246, 2021, 119021, 10.1016/j.saa.2020.119021.
Lloyd, A., Russell, M., Blanes, L., Doble, P., Roux, C., Lab-on-a-chip screening of methamphetamine and pseudoephedrine in samples from clandestine laboratories. Forensic Sci. Int. 228 (2013), 8–14, 10.1016/j.forsciint.2013.01.036.
Crevillen, A.G., Barrigas, I., Blasco, A.J., Gonzalez, M.C., Escarpa, A., Microchip-electrochemistry route for rapid screening of hydroquinone and arbutin from miscellaneous samples: investigation of the robustness of a simple cross-injection system. Anal. Chim. Acta 562 (2006), 137–144, 10.1016/j.aca.2006.01.052.
Ha, N.S., Ly, J., Jones, J., Cheung, S., van Dam, R.M., Novel volumetric method for highly repeatable injection in microchip electrophoresis. Anal. Chim. Acta 985 (2017), 129–140, 10.1016/j.aca.2017.05.037.
Dossi, N., Toniolo, R., Susmel, S., Pizzariello, A., Bontempelli, G., A simple approach to the hydrodynamic injection in microchip electrophoresis with electrochemical detection. Electrophoresis 31 (2010), 2541–2547, 10.1002/elps.201000089.
Zeid, A.M., Nasr, J.J.M., Belal, F., Walash, M.I., Baba, Y., Kaji, N., Determination of three antiepileptic drugs in pharmaceutical formulations using microfluidic chips coupled with light-emitting diode induced fluorescence detection. Spectrochim. Acta Part A, 246, 2021, 119021, 10.1016/j.saa.2020.119021.
Kato, M., Gyoten, Y., Sakai-Kato, K., Nakajima, T., Toyo'oka, T., Analysis of amino acids and proteins using a poly(methyl methacrylate) microfluidic system. Electrophoresis 26 (2005), 3682–3688, 10.1002/elps.200500124.