[en] Bones are now recognised as endocrine organs with diverse functions. Osteocalcin, a protein primarily produced by osteoblasts, has garnered significant attention. Research into osteocalcin has revealed its impact on glucose metabolism and its unexpected endocrine role, particularly in its undercarboxylated form (ucOC). This form influences organs, affecting insulin sensitivity and even showing correlations with conditions like type 2 diabetes and cardiovascular diseases. However, analytical challenges are impeding advances in clinical research. Various immunoassays like RIA, EIA, ECLIA, IRMA, and ELISA have been developed to analyse osteocalcin. Recent innovations include techniques like OS-ELISA and OS phage Immuno-PCR, enabling fragment analysis. Advancements also encompass porous silicon for detection and ECLIA for rapid measurements. The limitations of immunoassays lead to ucOC measurement discrepancies, prompting the development of mass spectrometry-based techniques. Mass spectrometry increasingly quantifies carboxylated, undercarboxylated, and fragmented forms of osteocalcin. Mass spectrometry improves routine and clinical analysis accuracy. With heightened specificity, it identifies carboxylation status and serum fragmentations, boosting measurement reliability as a reference method. This approach augments analytical precision, advancing disease understanding, enabling personalised medicine, and ultimately benefiting clinical outcomes. In this review, the different techniques for the analysis of osteocalcin will be explored and compared, and their clinical implications will be discussed.
Disciplines :
Laboratory medicine & medical technology Urology & nephrology
Author, co-author :
Determe, William ; Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium. Electronic address: william.determe@gmail.com
Hauge, Sabina Chaudhary; Department of Nephrology, Copenhagen University Hospital-Herlev, Copenhagen, Denmark, Institute of Clinical Medicine, University of Copenhagen, Denmark
Demeuse, Justine ; Université de Liège - ULiège > Département de pharmacie > Chimie médicale
Massonnet, Philippe ; Université de Liège - ULiège > Département de pharmacie > Chimie médicale
Grifnée, Elodie ; Université de Liège - ULiège > Département de pharmacie > Chimie médicale
Huyghebaert, Loreen ; Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
Dubrowski, Thomas ; Centre Hospitalier Universitaire de Liège - CHU > > Service de chimie clinique
Schoumacher, Matthieu ; Université de Liège - ULiège > Département de pharmacie > Chimie médicale
Peeters, Stéphanie ; Université de Liège - ULiège > Département de pharmacie > Chimie médicale
Le Goff, Caroline ; Université de Liège - ULiège > Département de pharmacie > Chimie médicale
Evenepoel, Pieter; Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium, Department of Medicine, Division of Nephrology, University Hospitals Leuv =en, Leuven, Belgium
Hansen, Ditte; Department of Nephrology, Copenhagen University Hospital-Herlev, Copenhagen, Denmark, Institute of Clinical Medicine, University of Copenhagen, Denmark
Cavalier, Etienne ; Université de Liège - ULiège > Département de pharmacie > Chimie médicale
Zhang, Q., Riddle, R.C., Clemens, T.L., Bone and the regulation of global energy balance. J. Intern. Med. 277 (2015), 681–689, 10.1111/joim.12348.
Plotkin, L.I., Sanz, N., Brun, L.R., Messages from the Mineral: How Bone Cells Communicate with Other Tissues. Calcif. Tissue Int., 2023, 10.1007/s00223-023-01091-2.
Lee, N.K., Sowa, H., Hinoi, E., Ferron, M., Deok Ahn, J., Confavreux, C., Dacquin, R., Mee, P.J., Mckee, M.D., Jung, D.Y., Zhang, Z., Kim, J.K., Mauvais-Jarvis, F., Ducy, P., Karsenty, G., Endocrine regulation of energy metabolism by the skeleton. Cell. 130 (2007), 456–469, 10.1016/j.cell.2007.05.047.
Komori, T., Functions of osteocalcin in bone, pancreas, testis, and muscle. Int. J. Mol. Sci. 21 (2020), 1–15, 10.3390/ijms21207513.
P. V Hauschka, J.B. Lian, P.M. Gallop, Direct identification of the calcium-binding amino acid, y-carboxyglutamate, in mineralized tissue, 1975.
Sullivan, T.R., Duque, G., Keech, A.C., Herrmann, M., An Old Friend in a New Light: The Role of Osteocalcin in Energy Metabolism. Cardiovasc. Ther. 31 (2013), 65–75, 10.1111/j.1755-5922.2011.00300.x.
Villa, J.K.D., Diaz, M.A.N., Pizziolo, V.R., Martino, H.S.D., Effect of vitamin K in bone metabolism and vascular calcification: A review of mechanisms of action and evidences. Crit. Rev. Food Sci. Nutr. 57 (2017), 3959–3970, 10.1080/10408398.2016.1211616.
Patterson-Allen, P., Brautigam, C.E., Grindeland, R.E., Asling, C.W., Callahan, P.X., A specific radioimmunoassay for osteocalcin with advantageous species crossreactivity. Anal. Biochem. 120 (1982), 1–7, 10.1016/0003-2697(82)90309-8.
Taylor, A.K., Linkhart, S., Mohan, S., Christenson, R.A., Singer, F.R., Baylink, D.J., Pettis, J., Multiple Osteocalcin Fragments in Human Urine and Serum as Detected by a Midmolecule Osteocalcin Radioimmunoassay*. JCE. & m. 70 (1990), 467–472, 10.1210/jcem-70-2-467.
Martiniakova, M., Biro, R., Kovacova, V., Babikova, M., Zemanova, N., Mondockova, V., Omelka, R., Current knowledge of bone-derived factor osteocalcin: its role in the management and treatment of diabetes mellitus, osteoporosis, osteopetrosis and inflammatory joint diseases. J. Mol. Med. 102 (2024), 435–452, 10.1007/s00109-024-02418-8.
Lin, R.A., Hsieh, J.T., Huang, C.C., Yang, C.Y., Lin, Y.P., Tarng, D.C., Circulating Osteocalcin Fractions are Associated with Vascular Calcification and Mortality in Chronic Hemodialysis Patients. Calcif. Tissue Int. 113 (2023), 416–425, 10.1007/s00223-023-01122-y.
Lin, X., Brennan-Speranza, T.C., Levinger, I., Yeap, B.B., Undercarboxylated osteocalcin: Experimental and human evidence for a role in glucose homeostasis and muscle regulation of insulin sensitivity. Nutrients, 10, 2018, 10.3390/nu10070847.
Kuronen, I., Kokko, H., Parviainen, M., Production of monoclonal and polyclonal antibodies against human osteocalcin sequences and development of a two-site ELISA for intact human osteocalcin. J. Immunol. Methods. 163 (1993), 233–240, 10.1016/0022-1759(93)90127-s.
Smith, C., Lin, X., Parker, L., Yeap, B.B., Hayes, A., Levinger, I., The role of bone in energy metabolism: A focus on osteocalcin. Bone 188 (2024), 117–238, 10.1016/j.bone.2024.117238.
W. Farrugia, R.A. Melick, Metabolism of Osteocalcin, Calcif. Tissue Int. 39 (1986) 234-238. https://doi.org/ 10.1007/BF02555210.
P.D. Delmas, C. Christiansen, P.A. Price, Bone Gla Protein (Osteocalcin) Assay Standardization Report, J. Bone Miner. Res. 5 (1990) 5-11. https://doi.org/ 10.1002/jbmr.5650050104.
Hellman, J., KäKönen, S.M., Pettersson, K., Epitope Mapping of Nine Monoclonal Antibodies Against Osteocalcin: Combinations into Two-Site Assays Affect Both Assay Specificity and Sample Stability. J. Bone Miner. Res. 11 (1996), 1165–1175, 10.1002/jbmr.5650110816.
Garnero, P., Grimaux, M., Seguin, P., Delmas, P.D., Characterization of immunoreactive forms of human osteocalcin generated in vivo and in vitro. J. Bone Miner. Res. 9 (1994), 255–264, 10.1002/jbmr.5650090215.
Ami, D., Santambrogio, C., Vertemara, J., Bovio, F., Santisteban-Veiga, A., Sabín, J., Zampella, G., Grandori, R., Cipolla, L., Natalello, A., The Landscape of Osteocalcin Proteoforms Reveals Distinct Structural and Functional Roles of Its Carboxylation Sites. J. Am. Chem. Soc., 2024, 10.1021/jacs.4c09732.
Scott, A.B., Taurozzi, A., Hughes, N., Pedersen, D.D., Kontopoulos, I., Mackie, M., Collins, M.J., Comparing biological and pathological factors affecting osteocalcin concentrations in archaeological skeletal remains. J. Archaeol. Sci. Reports 34 (2020), 102–573, 10.1016/j.jasrep.2020.102573.
Thibert, S., Evaluation of the Vitamin K Dependence of Human Osteocalcin Metal Binding and Self-Assembly Properties. Thesis for the Degree of Doctor of Philosophy, 221, 2021, Arizona State University, USA.
Gao, H., Peng, X., Li, N., Gou, L., Xu, T., Wang, Y., Qin, J., Liang, H., Ma, P., Li, S., Wu, J., Qin, X., Xue, B., Emerging role of liver-bone axis in osteoporosis. J. Orthop. Transl. 48 (2024), 217–231, 10.1016/j.jot.2024.07.008.
Qi, X.S., He, X., Peng, Y., He, X.H., Yang, Q.Y., Jiao, K., Liu, H., Roles of osteocalcin in the central nervous system. CNS Neurosci. Ther. 30 (2024), 1–12, 10.1111/cns.70016.
P.A. Price, A.S. Otsuka, J.W. Poser, J. Kristaponis, N. Raman, Characterization of a y-carboxyglutamic acid-containing protein from bone, Proc. Natl. Acad. Sci. USA 73 (1976) 1447-1451. https://doi.org/ 10.1073/pnas.73.5.1447.
P.A. Price, S.K. Nishimoto, Radioimmunoassay for the vitamin K-dependent protein of bone and its discovery in plasma, Proc. Natl. Acad. Sci. USA. 77 (1980) 2234-2238. https://doi.org/ 10.1073/pnas.77.4.2234.
Hauschka, P.V., Reid, M.L., Vitamin K dependence of a calcium-binding protein containing γ-carboxyglutamic acid in chicken bone. J. Biol. Chem. 253 (1978), 9063–9068, 10.1016/s0021-9258(17)34285-0.
Carstanjen, B., Sulon, J., Banga-Mboko, H., François Beckers, J., Remy, B., Development and validation of a specific radioimmunoassay for equine osteocalcin. Domest. Anim. Endocrinol. 24 (2003), 31–41, 10.1016/S0739-7240(02)00185-6.
Srivastava, A.K., Castillo, G., Wergedal, J.E., Mohan, S., Baylink, D.J., Development and application of a synthetic peptide-based osteocalcin assay for the measurement of bone formation in mouse serum. Calcif. Tissue Int. 67 (2000), 255–259, 10.1007/s002230001109.
H. Tanaka, M. Kuwada, M. Shiraki, K. Katayama, An enzyme immunoassay for osteocalcin, J Immunol. Methods. 94 (1986) 19-24. https://doi.org/ 10.1016/0022-1759(86)90210-3.
J.C. Dumon, H. Wantier, F. Mathieu, M. Mantia, J.J. Body, D. Jc, Technical and clinical validation of a new immunoradiometric assay for human osteocalcin, Eur. J. Endocrinol. 135 (1996) 231-237. https://doi.org/ 10.1530/eje.0.1350231.
Knapen, M.H.J., Eisenwiener, H.G., Vermeer, C., Osteocalcin detection in aging serum and whole blood: Stability of different osteocalcin fractions. Clin. Chim. Acta 256 (1996), 151–164, 10.1016/S0009-8981(96)06418-2.
Ylikoski, A., Hellman, J., Matikainen, T., Käkönen, S.M., Karp, M., Väänänen, H.K., Lövgren, T., Pettersson, K., A dual-label immunofluorometric assay for human osteocalcin. J. Bone Miner. Res. 13 (1998), 1183–1190, 10.1359/jbmr.1998.13.7.1183.
Prakash, K.V.B., Desai, M., Bandivdekar, A.H., Donde, U.M., Khatkhatay, M.I., Extraction, purification, and development of an enzyme-linked immunosorbent assay for osteocalcin. J. Immunoass. Immunochem. 26 (2005), 57–75, 10.1081/IAS-200041161.
Parviainen, M., Kuronen, I., Kokko, H., Lakaniemi, M., Savolainen, K., Mononen, I., Two-site enzyme immunoassay for measuring intact human osteocalcin in serum. J. Bone Miner. Res. 9 (1994), 347–354, 10.1002/jbmr.5650090309.
Bhadricha, H., Khatkhatay, M.I., Desai, M., Development of an in house ELISA for human intact osteocalcin and its utility in diagnosis and management of osteoporosis. Clin. Chim. Acta 489 (2019), 117–123, 10.1016/j.cca.2018.12.007.
Eick, G.N., Madimenos, F.C., Cepon-Robins, T.J., Devlin, M.J., Kowal, P., Sugiyama, L.S., Snodgrass, J.J., Validation of an enzyme-linked immunoassay assay for osteocalcin, a marker of bone formation, in dried blood spots. Am. J. Hum. Biol., 32, 2020, 10.1002/ajhb.23394.
A.K. Srivastava, S. Mohan, F.R. Singer, D.J. Baylink, A Urine Midmolecule Osteocalcin Assay Shows Higher Discriminatory Power Than a Serum Midmolecule Osteocalcin Assay During Short-term Alendronate Treatment of Osteoporotic Patients, Bone. 31 (2002) 62-69. https://doi.org/ 10.1016/s8756-3282(02)00793-7.
Ihara, M., Yoshikawa, A., Wu, Y., Takahashi, H., Mawatari, K., Shimura, K., Sato, K., Kitamori, T., Ueda, H., Micro OS-ELISA: Rapid noncompetitive detection of a small biomarker peptide by open-sandwich enzyme-linked immunosorbent assay (OS-ELISA) integrated into microfluidic device. Lab Chip 10 (2010), 92–100, 10.1039/b915516c.
Dong, J., Hasan, S., Fujioka, Y., Ueda, H., Detection of small molecule diagnostic markers with phage-based open-sandwich immuno-PCR. J. Immunol. Methods 377 (2012), 1–7, 10.1016/j.jim.2012.01.005.
Hasan, S., Dong, J., Hara, Y., Morizane, Y., Shibasaki, F., Ueda, H., Protein-based open sandwich immuno-PCR for sensitive detection of small biomarkers. Anal. Sci. 29 (2013), 871–876, 10.2116/analsci.29.871.
Rahimi, F., Mohammadnejad Arough, J., Yaghoobi, M., Davoodi, H., Sepehri, F., Amirabadizadeh, M., A novel approach for osteocalcin detection by competitive ELISA using porous silicon as a substrate. Biotechnol. Appl. Biochem. 64 (2017), 871–878, 10.1002/bab.1541.
Kim, H.Y., Sato, S., Takenaka, S., Lee, M.H., Membrane-based microwave-mediated electrochemical immunoassay for the in vitro, highly sensitive detection of osteoporosis-related biomarkers. Sensors (switzerland), 18, 2018, 10.3390/s18092933.
Ballato, E., Deepika, F., Prado, M., Russo, V., Fuenmayor, V., Bathina, S., Villareal, D.T., Qualls, C., Armamento-Villareal, R., Circulating osteogenic progenitors and osteoclast precursors are associated with long-term glycemic control, sex steroids, and visceral adipose tissue in men with type 2 diabetes mellitus. Front. Endocrinol. (lausanne)., 13, 2022, 10.3389/fendo.2022.936159.
Qin, W., Xie, T., Chen, Y., Zeng, D., Meng, Q., Lan, D., Osteocalcin: may be a useful biomarker for early identification of rapidly progressive central precocious puberty in girls. J. Endocrinol. Invest., 2024, 10.1007/s40618-024-02478-0.
C. Rosenquist, P. Qvist, N. Bjarnason, C. Christiansen2, Measurement of a More Stable Region of Osteocalcin in Serum by ELISA with Two Monoclonal Antibodies, 1995. https://academic.oup.com/clinchem/article/41/10/1439/5645998.
Gajewska, J., Chełchowska, M., Szamotulska, K., Klemarczyk, W., Strucińska, M., Ambroszkiewicz, J., Differences in Bone Metabolism between Children with Prader-Willi Syndrome during Growth Hormone Treatment and Healthy Subjects: A Pilot Study. Int. J. Mol. Sci., 25, 2024, 10.3390/ijms25179159.
Ferron, M., Wei, J., Yoshizawa, T., Ducy, P., Karsenty, G., An ELISA-based method to quantify osteocalcin carboxylation in mice. Biochem. Biophys. Res. Commun. 397 (2010), 691–696, 10.1016/j.bbrc.2010.06.008.
Redondo, M.J., Shirkey, B.A., Fraga, D.W., Gaber, A.O., Sabek, O.M., Serum undercarboxylated osteocalcin correlates with hemoglobin A1c in children with recently diagnosed pediatric diabetes, Pediatr. Diabetes 18 (2017), 869–873, 10.1111/pedi.12501.
Lacombe, J., Al Rifai, O., Loter, L., Moran, T., Turcotte, A.F., Grenier-Larouche, T., Tchernof, A., Biertho, L., Carpentier, A.C., Prud'homme, D., Rabasa-Lhoret, R., Karsenty, G., Gagnon, C., Jiang, W., Ferron, M., Measurement of bioactive osteocalcin in humans using a novel immunoassay reveals association with glucose metabolism and β-cell function. Am. J. Physiol. - Endocrinol. Metab. 318 (2020), E381–E391, 10.1152/ajpendo.00321.2019.
Lu, C., Ivaska, K.K., Alen, M., Wang, Q., Tor̈mäkangas, T., Xu, L., Wiklund, P., Mikkola, T.M., Pekkala, S., Tian, H., Väänänen, H.K., Cheng, S., Serum osteocalcin is not associated with glucose but is inversely associated with leptin across generations of nondiabetic women. J. Clin. Endocrinol. Metab. 97 (2012), 4106–4114, 10.1210/jc.2012-2045.
Carr, S.A., Hauschka, P.V., Biemann, K., Gas chromatographic mass spectrometric sequence determination of osteocalcin, a gamma-carboxyglutamic acid-containing protein from chicken bone. J. Biol. Chem. 256 (1981), 9944–9950, 10.1016/s0021-9258(19)68721-1.
H. Vahatalo, S. Auriola, S. Lapinjoki, High-performance liquid chromatography-mass spectrometry of an osteocalcin derivative, J. Chromatogr. A. 846 (1999) 49-57. https://doi.org/ 10.1016/s0021-9673(98)01040-1.
Nousiainen, M., Derrick, P.J., Kaartinen, M.T., Mä Enpä, P.H., Rouvinen, J., Vainiotalo, P., A Mass Spectrometric Study of Metal Binding to Osteocalcin. Chem. Biol. 9 (2002), 195–202, 10.1016/s1074-5521(02)00104-7.
Ivaska, K.K., Hentunen, T.A., Vääräniemi, J., Ylipahkala, H., Pettersson, K., Väänänen, H.K., Release of Intact and Fragmented Osteocalcin Molecules from Bone Matrix during Bone Resorption in Vitro. J. Biol. Chem. 279 (2004), 18361–18369, 10.1074/jbc.M314324200.
Balizs, G., Weise, C., Rozycki, C., Opialla, T., Sawada, S., Zagon, J., Lampen, A., Determination of osteocalcin in meat and bone meal of bovine and porcine origin using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry and high-resolution hybrid mass spectrometry. Anal. Chim. Acta 693 (2011), 89–99, 10.1016/J.ACA.2011.03.027.
Nielsen-Marsh, C.M., Richards, M.P., Hauschka, P.V., Thomas-Oates, J.E., Trinkaus, E., Pettitt, P.B., Karavanić, I., Poinar, H., Collins, M.J., Osteocalcin protein sequences of Neanderthals and modern primates. Proc. Natl. Acad. Sci. u. s. a. 102 (2005), 4409–4413, 10.1073/pnas.0500450102.
Cleland, T.P., Thomas, C.J., Gundberg, C.M., Vashishth, D., Influence of carboxylation on osteocalcin detection by mass spectrometry. Rapid Commun. Mass Spectrom. 30 (2016), 2109–2115, 10.1002/rcm.7692.
Rehder, D.S., Gundberg, C.M., Booth, S.L., Borges, C.R., Gamma-carboxylation and fragmentation of osteocalcin in human serum defined by mass spectrometry. Mol. Cell. Proteomics 14 (2015), 1546–1555, 10.1074/mcp.M114.047621.
Wong, L.-J.-C., Lam, C.-W., Alternative, Noninvasive Tissues for Quantitative Screening of Mutant Mitochondrial DNA. Clin. Chem. 43 (1994), 1241–1243 https://academic.oup.com/clinchem/article/43/7/1240/5640913.
Kratz, M., Zelnick, L.R., de Boer, I.H., Relationship between chronic kidney disease glucose homeostasis and plasma osteocalcin carboxylation and fragmentation. J Ren. Nutr. 31 (2021), 248–256, 10.1053/j.jrn.2020.05.013.
Thomas, C.J., Cleland, T.P., Zhang, S., Gundberg, C.M., Vashishth, D., Identification and characterization of glycation adducts on osteocalcin. Anal. Biochem. 525 (2017), 46–53, 10.1016/j.ab.2017.02.011.
Skinner, J., Vitamin K and Equine Osteocalcin: an Enigma Explored. Thesis for the Degree of Doctor of Philosophy, 285, 2020, The University of Queenland, Australia.
Scudeller, L.A., Srinivasan, S., Rossi, A.M., Stayton, P.S., Drobny, G.P., Castner, D.G., Orientation and conformation of osteocalcin adsorbed onto calcium phosphate and silica surfaces. Biointerphases, 12, 2017, 02D411, 10.1116/1.4983407.
Jtippner, H., Schettler, T., Giebei, G., Wenner, S., Hesch, R.-D., Calcified Tissue International Radioimmunoassay for Human Osteocalcin Using an Antibody Raised Against the Synthetic Human (h37–49) Sequence. Calcif. Tissue. Int. 39 (1986), 310–315, 10.1007/BF02555196.
Taylor, A.K., Linkhart, S.G., Mohan, S., Baylink, D.J., Development of a New Radioimmunoassay for Human Osteocalcin: Evidence for a Midmolecule Epitope. Metabolism. 37 (1988), 872–877, 10.1016/0026-0495(88)90122-9.
Nakatsuka, K., Miki, T., Nishizawa, Y., Tabata, T., Inoue, T., Morii, H., Ogata, E., Calcium-Regulating Hormones. I. Role in Disease and Aging. Contributions to Nephrology, 90, 1991, 10.1159/000420116.
Fu, J.Y., Muller, D., Simple, Rapid Enzyme-Linked Immunosorbent Assay (ELISA) for the Determination of Rat Osteocalcin. Calcif. Tissue. Int. 64 (1999), 229–233, 10.1007/s002239900608.
Funaoka, H., Dohi, Y., Ohgushi, H., Akahane, M., Imamura, T., Development of a high-specificity enzyme-linked immunosorbent assay (ELISA) system for the quantification and validation of intact rat osteocalcin. Immunol. Invest. 39 (2010), 54–73, 10.3109/08820130903428283.