[en] A major limitation preventing the use of surface-enhanced Raman scattering (SERS) in routine analyses is the signal variability due to the heterogeneity of metallic nanoparticles used as SERS substrates. This study aimed to robustly optimise a synthesis process of silver nanoparticles to improve the measured SERS signal repeatability and the protocol synthesis repeatability. The process is inspired by a chemical reduction method associated with microwave irradiation to guarantee better controlled and uniform heating. The innovative Quality by Design strategy was implemented to optimise the different parameters of the process. A preliminary investigation design was firstly carried out to evaluate the influence of four parameters selected by means of an Ishikawa diagram. The critical quality attributes were to maximise the intensity of the SERS response and minimise its variance. The reaction time, temperature and stirring speed are critical process parameters. These were optimised using an I-optimal design. A robust operating zone covering the optimal reaction conditions (3.36 min–130 °C–600 rpm) associated with a probability of success was modelled. Validation of this point confirmed the prediction with intra- and inter-batch variabilities of less than 15%. In conclusion, this study successfully optimised silver nanoparticles by a rapid, low cost and simple technique enhancing the quantitative perspectives of SERS.
Research Center/Unit :
CIRM - Centre Interdisciplinaire de Recherche sur le Médicament - ULiège
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Horne, Julie ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Beckers, Pierre ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Sacre, Pierre-Yves ; Université de Liège - ULiège > Département de pharmacie > Chimie analytique
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
De Carvalho P. Crossman A. Massey E. James J. Rickard S. Goldberg P. Informatics in Medicine Unlocked Real-Time Validation of Surface-Enhanced Raman Scattering Substrates via Convolutional Neural Network Algorithm Inform. Med. Unlocked 2022 33 101076 10.1016/j.imu.2022.101076
Duckworth J. Krasnoslobodtsev A.V. Modular Micro Raman Reader Instrument for Fast SERS-Based Detection of Biomarkers Micromachines 2022 13 1570 10.3390/mi13101570 36295923
Faulds K. Laing S. Graham D. Laing S. From Raman to SESORRS: Moving Deeper into Cancer Detection and Treatment Monitoring Chem. Commun. 2021 57 12436 12451 10.1039/D1CC04805H
Baker G. Moore D. Progress in Plasmonic Engineering of Surface-Enhanced Raman-Scattering Substrates toward Ultra-Trace Analysis Anal. Bioanal. Chem. 2005 382 1751 1770 10.1007/s00216-005-3353-7 16049671
Yang L. Yang Y. Ma Y. Li S. Wei Y. Huang Z. Viet Long N. Fabrication of Semiconductor ZnO Nanostructures for Versatile SERS Application Nanomaterials 2017 7 398 10.3390/nano7110398
Castro R.C. Ribeiro D.S.M. Santos J.L.M. Nunes C. Reis S. Páscoa R.N.M.J. Chemometric-Assisted Surface-Enhanced Raman Spectroscopy for Metformin Determination Using Gold Nanoparticles as Substrate Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2023 287 122118 10.1016/j.saa.2022.122118 36401918
Freeman R.G. Grabar K.C. Allison K.J. Bright R.M. Davis J.A. Guthrie A.P. Hommer M.B. Jackson M.A. Smith P.C. Walter D.G. et al. Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates Science 1995 267 1629 1632 10.1126/science.267.5204.1629
De Bleye C. Dumont E. Rozet E. Sacré P.Y. Chavez P.F. Netchacovitch L. Piel G. Hubert P. Ziemons E. Determination of 4-Aminophenol in a Pharmaceutical Formulation Using Surface Enhanced Raman Scattering: From Development to Method Validation Talanta 2013 116 899 905 10.1016/j.talanta.2013.07.084
Song D. Yang R. Long F. Zhu A. Applications of Magnetic Nanoparticles in Surface-Enhanced Raman Scattering (SERS) Detection of Environmental Pollutants J. Environ. Sci. 2018 80 14 34 10.1016/j.jes.2018.07.004
Jiang L. Hassan M. Ali S. Li H. Sheng R. Chen Q. Trends in Food Science & Technology Evolving Trends in SERS-Based Techniques for Food Quality and Safety: A Review Trends Food Sci. Technol. 2021 112 225 240 10.1016/j.tifs.2021.04.006
Nolan J.P. Duggan E. Liu E. Condello D. Dave I. Stoner S.A. Single Cell Analysis Using Surface Enhanced Raman Scattering (SERS) Tags Methods 2012 57 272 279 10.1016/j.ymeth.2012.03.024 22498143
Grys D.B. Chikkaraddy R. Kamp M. Scherman O.A. Baumberg J.J. de Nijs B. Eliminating Irreproducibility in SERS Substrates J. Raman Spectrosc. 2021 52 412 419 10.1002/jrs.6008
Zhou H. Li X. Wang L. Liang Y. Jialading A. Wang Z. Application of SERS Quantitative Analysis Method in Food Safety Detection Rev. Anal. Chem. 2021 40 173 186 10.1515/revac-2021-0132
Bastus N.G. Comenge J. Puntes V. Kinetically Controlled Seeded Growth Synthesis of Citrate-Stabilized Gold Nanoparticles of up to 200 Nm: Size Focusing versus Ostwald Ripening Langmuir 2011 27 11098 11105 10.1021/la201938u 21728302
Santos E.D.B. Madalossi N.V. Sigoli F.A. Mazali I.O. Silver Nanoparticles: Green Synthesis, Self-Assembled Nanostructures and Their Application as SERS Substrates New J. Chem. 2015 39 2839 2846 10.1039/C4NJ02239D
Stamplecoskie K.G. Scaiano J.C. Tiwari V.S. Anis H. Optimal Size of Silver Nanoparticles for Surface-Enhanced Raman Spectroscopy J. Phys. Chem. C 2011 115 1403 1409 10.1021/jp106666t
Boyack R. Le Ru E.C. Investigation of Particle Shape and Size Effects in SERS Using T-Matrix Calculations Phys. Chem. Chem. Phys. 2009 11 7398 7405 10.1039/b905645a 19690711
Zhang C. Chen S. Jiang Z. Shi Z. Wang J. Du L. Highly Sensitive and Reproducible SERS Substrates Based on Ordered Micropyramid Array and Silver Nanoparticles ACS Appl. Mater. Interfaces 2021 13 29222 29229 10.1021/acsami.1c08712 34115481
Gao T. Wang Y. Wang K. Zhang X. Dui J. Li G. Lou S. Zhou S. Controlled Synthesis of Homogeneous Ag Nanosheet-Assembled Film for Effective SERS Substrate ACS Appl. Mater. Interfaces 2013 5 7308 7314 10.1021/am401552x
Lee P.C. Meisel D. Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols J. Phys. Chem. 1982 86 3391 3395 10.1021/j100214a025
Ji X. Song X. Li J. Bai Y. Yang W. Peng X. Size Control of Gold Nanocrystals in Citrate Reduction: The Third Role of Citrate J. Am. Chem. Soc. 2007 129 13939 13948 10.1021/ja074447k 17948996
Horne J. De Bleye C. Lebrun P. Kemik K. Van Laethem T. Sacr P. Hubert P. Ziemons E. Optimization of Silver Nanoparticles Synthesis by Chemical Reduction to Enhance SERS Quantitative Performances: Early Characterization Using the Quality by Design Approach J. Pharm. Biomed. Anal. 2023 233 115475 10.1016/j.jpba.2023.115475 37235958
Dumont E. De Bleye C. Cailletaud J. Sacré P.Y. Van Lerberghe P.B. Rogister B. Rance G.A. Aylott J.W. Hubert P. Ziemons E. Development of a SERS Strategy to Overcome the Nanoparticle Stabilisation Effect in Serum-Containing Samples: Application to the Quantification of Dopamine in the Culture Medium of PC-12 Cells Talanta 2018 186 8 16 10.1016/j.talanta.2018.04.038
Jiang H. Moon K.S. Zhang Z. Pothukuchi S. Wong C.P. Variable Frequency Microwave Synthesis of Silver Nanoparticles J. Nanopart. Res. 2006 8 117 124 10.1007/s11051-005-7522-6
Bahadur N.M. Furusawa T. Sato M. Kurayama F. Siddiquey I.A. Suzuki N. Fast and Facile Synthesis of Silica Coated Silver Nanoparticles by Microwave Irradiation J. Colloid Interface Sci. 2011 355 312 320 10.1016/j.jcis.2010.12.016 21227442
Yin H. Yamamoto T. Wada Y. Yanagida S. Large-Scale and Size-Controlled Synthesis of Silver Nanoparticles under Microwave Irradiation Mater. Chem. Phys. 2004 83 66 70 10.1016/j.matchemphys.2003.09.006
Deidda R. Orlandini S. Hubert P. Hubert C. Risk-Based Approach for Method Development in Pharmaceutical Quality Control Context: A Critical Review J. Pharm. Biomed. Anal. 2018 161 110 121 10.1016/j.jpba.2018.07.050 30145448
Charoo N.A. Shamsher A.A.A. Zidan A.S. Rahman Z. Quality by Design Approach for Formulation Development: A Case Study of Dispersible Tablets Int. J. Pharm. 2012 423 167 178 10.1016/j.ijpharm.2011.12.024 22209997
Pramod K. Tahir M.A. Charoo N. Ansari S. Ali J. Pharmaceutical Product Development: A Quality by Design Approach Int. J. Pharm. Investig. 2016 6 129 10.4103/2230-973x.187350
Sangshetti J.N. Deshpande M. Zaheer Z. Shinde D.B. Arote R. Quality by Design Approach: Regulatory Need Arab. J. Chem. 2017 10 S3412 S3425 10.1016/j.arabjc.2014.01.025
Gawande M.B. Shelke S.N. Zboril R. Varma R.S. Microwave-Assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics Acc. Chem. Res. 2014 47 1338 1348 10.1021/ar400309b 24666323
Thanh N.V.K. Giang N.D. Vinh L.Q. Dat H.T. A Low Cost Microwave Synthesis Method for Preparation of Gold Nanoparticles Commun. Phys. 2014 24 146 10.15625/0868-3166/24/2/3809
El-Naggar M.E. Shaheen T.I. Fouda M.M.G. Hebeish A.A. Eco-Friendly Microwave-Assisted Green and Rapid Synthesis of Well-Stabilized Gold and Core-Shell Silver-Gold Nanoparticles Carbohydr. Polym. 2016 136 1128 1136 10.1016/j.carbpol.2015.10.003 26572455
Liu F.K. Ker C.J. Chang Y.C. Ko F.H. Chu T.C. Dai B.T. Microwave Heating for the Preparation of Nanometer Gold Particles Jpn. J. Appl. Phys. 2003 42 4152 4158 10.1143/JJAP.42.4152
Liu F. Liu J. Cao X. Microwave-Assisted Synthesis Silver Nanoparticles and Their Surface Enhancement Raman Scattering Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met. Mater. Eng. 2017 46 2395 2398 10.1016/s1875-5372(17)30204-7
Moghazy M.A. Effect of Stirring Time on ZnO Nanoparticles Properties and Morphology IOP Conf. Ser. Mater. Sci. Eng. 2021 1046 012012 10.1088/1757-899X/1046/1/012012
Sallem F. Chassagnon R. Megriche A. El Maaoui M. Millot N. Effect of Mechanical Stirring and Temperature on Dynamic Hydrothermal Synthesis of Titanate Nanotubes J. Alloys Compd. 2017 722 785 796 10.1016/j.jallcom.2017.06.172
Jones B. Allen-Moyer K. Goos P. A-Optimal versus D-Optimal Design of Screening Experiments J. Qual. Technol. 2021 53 369 382 10.1080/00224065.2020.1757391
Le Ru E.C. Etchegoin P.G. Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects Elsevier Amsterdam, The Netherlands 2009
Bhattacharjee S. DLS and Zeta Potential-What They Are and What They Are Not? J. Control. Release 2016 235 337 351 10.1016/j.jconrel.2016.06.017
Liu B. Wu T. Yang X. Wang Z. Du Y. Portable Microfluidic Chip Based Surface-Enhanced Raman Spectroscopy Sensor for Crystal Violet Anal. Lett. 2014 47 2682 2690 10.1080/00032719.2014.917425
Lai K. Zhang Y. Du R. Zhai F. Rasco B.A. Huang Y. Determination of Chloramphenicol and Crystal Violet with Surface Enhanced Raman Spectroscopy Sens. Instrum. Food Qual. Saf. 2011 5 19 24 10.1007/s11694-011-9106-8
He S. Kang M.W.C. Khan F.J. Tan E.K.M. Reyes M.A. Kah J.C.Y. Optimizing Gold Nanostars as a Colloid-Based Surface-Enhanced Raman Scattering (SERS) Substrate J. Opt. 2015 17 114013 10.1088/2040-8978/17/11/114013
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.