Reversing the relative time courses of the peptide bond reaction with oligopeptides of different lengths and charged amino acid distributions in the ribosome exit tunnel
Biophysics; Biochemistry; Computational biology; Mechanobiochemistry; Michaelis-Menten kinetics; Ribosome; Ribosome exit tunnel; Quench flow apparatus; Electrostatics of biomolecules; RNA; charged amino acids; picoNewtons forces; Chemical reaction time courses; Transition state; Energy barrier; Activation complex; Ribozyme
Abstract :
[en] The kinetics of the protein elongation cycle by the ribosome depends on intertwined factors. One of these factors is the electrostatic interaction of the nascent protein with the ribosome exit tunnel. In this computational biology theoretical study, we focus on the rate of the peptide bond formation and its dependence on the ribosome exit tunnel electrostatic potential profile. We quantitatively predict how oligopeptides of variable lengths can affect the peptide bond formation rate. We applied the Michaelis-Menten model as previously extended to incorporate the mechano-biochemical effects of forces on the rate of reaction at the catalytic site of the ribosome. For a given pair of carboxy-terminal amino acid substrate at the P- and an aminoacyl-tRNA at the A- sites, the relative time courses of the peptide bond formation reaction can be reversed depending on the oligopeptide sequence embedded in the tunnel and their variable lengths from the P-site. The reversal is predicted to occur from a shift in positions of charged amino acids upstream in the oligopeptidyl-tRNA at the P-site. The position shift must be adjusted by clever design of the oligopeptide probes using the electrostatic potential profile along the exit tunnel axial path. These predicted quantitative results bring strong evidence of the importance and relative contribution of the electrostatic interaction of the ribosome exit tunnel with the nascent peptide chain during elongation.
Research Center/Unit :
GIGA In silico medecine-Biomechanics Research Unit - ULiège
Kerff, Frédéric ; Université de Liège - ULiège > Département des sciences de la vie > Centre d'Ingénierie des Protéines (CIP)
Rapino, Francesca ; Université de Liège - ULiège > Département de pharmacie
Close, Pierre ; Université de Liège - ULiège > Département de pharmacie
Geris, Liesbet ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Génie biomécanique
Language :
English
Title :
Reversing the relative time courses of the peptide bond reaction with oligopeptides of different lengths and charged amino acid distributions in the ribosome exit tunnel
Publication date :
31 May 2024
Journal title :
Computational and Structural Biotechnology Journal
ERC - European Research Council F.R.S.-FNRS - Fonds de la Recherche Scientifique WELBIO - Walloon Excellence in Life Sciences and Biotechnology
Funding number :
ERC grant agreement n°1011088919
Funding text :
This work was supported by the FNRS-FWO EOS grant 𝑛𝑜30480119
(Join-t-against-Osteoarthritis), the FNRS-WELBIO-CR-2017S-02 (THERAtRAME)
in Belgium and the European Research Council under
the European Union’s HORIZON EUROPE Framework Programme
(HEU/20214-2027) /ERC grant agreement 𝑛𝑜1011088919 (INSTant-
CARMA). The authors are grateful for the valuable contributions of the
anonymous reviewers.
MacDonald, C.T., Gibbs, J.H., Pipkin, A.C., Kinetics of biopolymerization on nucleic acid templates. Biopolymers, 6, 1968, 1.
MacDonald, C.T., Gibbs, J.H., Concerning the kinetics of polypeptide synthesis on polyribosomes. Biopolymers, 7, 1969, 707.
von der Haar, T., Mathematical and computational modelling of ribosomal movement and protein synthesis: an overview. Comput Struct Biotechnol J, 1, 2012, e201204002.
Zur, H., Tuller, T., Predictive biophysical modeling and understanding of the dynamics of mRNA translation and its evolution. Nucleic Acids Res, 44, 2016, 9031.
Dao Duc, K., Song, Y., The impact of ribosomal interference, codon usage, and exit tunnel interactions on translation elongation rate variation. PLoS Genet, 14, 2018, e1007166.
Dana, A., Tuller, T., The effect of tRNA levels on decoding times of mRNA codons. Nucleic Acids Res, 42, 2014, 9171.
Gorochowski, T., Ignatova, Z., Bovenberg, R., Roubos, H., Trade-offs between tRNA abundance and mRNA secondary structure support smoothing of translation elongation rate. Nucleic Acids Res, 43, 2015.
Novoa, E.V., Pavon-Eternod, M., Pan, T., Ribas de Pouplana, L., A role for tRNA modifications in genome structure and codon usage. Cell, 149(1), 2012, 202.
Lyu, X., Yang, Q., Li, L., Dang, Y., Zhou, Z., Chen, S., et al. Adaptation of codon usage to tRNA I34 modification controls translation kinetics and proteome landscape. PLoS Genet, 16, 2020.
Sabi, R., Tuller, T., A comparative genomics study on the effect of individual amino acids on ribosome stalling. BMC Genomics, 16, 2015, S5.
Requião, R.D., de Souza, H.J., Rossetto, S., Domitrovic, T., Palhano, F.L., Increased ribosome density associated to positively charged residues is evident in ribosome profiling experiments performed in the absence of translation inhibitors. RNA Biol, 13, 2016, 561.
Charneski, C.A., Hurst, L.D., Positively charged residues are the major determinants of ribosomal velocity. PLoS Biol, 11, 2013, e1001508.
Wen, J.-D., Lancaster, L., Hodges, H.C., Zeri, A., Yoshimura, S., Noller, H., et al. Following translation by single ribosomes one codon at a time. Nature (London), 452, 2008, 598.
Liu, T., Kaplan, A., Alexander, L., Yan, S., Wen, J.-D., Lancaster, L., et al. Direct measurement of the mechanical work during translocation by the ribosome. eLife, 3, 2014, e03406.
Desai, V.P., Frank, F., Lee, A., Righini, M., Lancaster, L., Noller, H.F., et al. Co-temporal force and fluorescence measurements reveal a ribosomal gear shift mechanism of translation regulation by structured mRNAs. Mol Cell, 75, 2019, 1007.
Artieri, C.G., Fraser, H.B., Accounting for biases in riboprofiling data indicates a major role for proline in stalling translation. Genome Res, 24, 2014, 2011.
Pavlov, M.Y., Watts, R.E., Tan, Z., Cornish, V.W., Ehrenberg, M., Forster, A.C., Slow peptide bond formation by proline and other N-alkylamino acids in translation. Proc Natl Acad Sci USA, 106(1), 2009, 50.
Shaw, L., Zia, R., Lee, K., Totally asymmetric exclusion process with extended objects: a model for protein synthesis. Phys Rev E, 68, 2003, 021910.
Shah, P., Ding, Y., Niemczyk, M., Kudla, G., Plotkin, J.B., Rate-limiting steps in yeast protein translation. Cell, 153(7), 2013, 1589.
Raveh, A., Margaliot, M., Sontag, E.D., Tuller, T., A model for competition for ribosomes in the cell. J R Soc Interface, 13(116), 2016.
Greulich, P., Ciandrini, L., Allen, R., Romano, M., Mixed population of competing totally asymmetric simple exclusion processes with a shared reservoir of particles. Phys Rev E, 85, 2012, 011142.
Petrone, P.M., Snow, C.D., Del Lucent, Pande, V.J., Side-chain recognition and gating in the ribosome exit tunnel. Proc Natl Acad Sci USA 105 (2008), 16549–16554.
Sharma, P.K., Xiang, Y., Kato, M., Warshel, A., What are the roles of substrate-assisted catalysis and proximity effects in peptide bond formation by the ribosome?. Biochemistry 44:34 (2005), 11307–11314.
Wohlgemuth, I., Brenner, S., Beringer, M., Rodnina, M.V., Modulation of the rate of peptidyl transfer on the ribosome by the nature of substrates. J Biol Chem 283 (2008), 32229–32234.
Rodnina, M.V., Beringer, M., Wintermeyer, W., Mechanism of peptide bond formation on the ribosome. Q Rev Biophys 39:3 (2006), 203–225.
Rodnina, M.V., Translation in prokaryotes. Cold Spring Harb Perspect Biol, 10(9), 2018.
Beringer, M., Rodnina, M.V., The ribosomal peptidyl transferase. Mol Cell 26 (2007), 311–321.
Pape, T., Wintermeyer, W., Rodnina, M.V., Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome. EMBO J 17 (1998), 7490–7497.
Sievers, A., Beringer, M., Rodnina, M.V., Wolfenden, R., The ribosome as an entropy trap. Proc Natl Acad Sci USA 101 (2004), 7897–7901.
Schmeing, T.M., Huang, K.S., Kitchen, D.E., Strobel, S.A., Steitz, T.A., Structural insights into the roles of water and the 2' hydroxyl of the P site tRNA in the peptidyl transferase reaction. Mol Cell 20 (2005), 437–448.
Trobro, S., Åqvist, J., Mechanism of peptide bond synthesis on the ribosome. Proc Natl Acad Sci USA 102 (2005), 12395–12400.
Trobro, S., Åqvist, J., Analysis of predictions for the catalytic mechanism of ribosomal peptidyl transfer. Biochemistry, 45(23), 2006, 7049.
Wallin, G., Åqvist, J., The transition state for peptide bond formation reveals the ribosome as a water trap. Proc Natl Acad Sci USA, 107(5), 2010, 1888.
Simonovic, M., Steitz, T.A., A structural view on the mechanism of ribosome-catalyzed peptide bond formation. Biochim Biophys Acta 1798 (2009), 612–623.
Polikanov, Y.S., Steitz, T.A., Innis, C.A., A proton wire to couple aminoacyl-tRNA accommodation and peptide-bond formation on the ribosome. Nat Struct Mol Biol 21:9 (2014), 787–793.
Joiret, M., Kerff, F., Rapino, F., Close, P., Geris, L., Ribosome exit tunnel electrostatics. Phys Rev E 105:1 (2022), 1–43.
Eyring, H., The activated complex in chemical reactions. J Chem Phys 3 (1935), 107–115.
Laidler, K.J., King, K., The development of transition state theory. J Phys Chem 87 (1983), 2657–2664.
Anslyn, E.V., Dougherty, D.A., Energy surfaces and kinetic analysis. Modern physical organic chemistry, 2005, University Science Books, Saucalito, CA, USA, 355–419.
Lu, J., Kobertz, W., Deutsch, C., Mapping the electrostatic potential within the ribosome exit tunnel. J Mol Biol 371 (2007), 1378–1391.
Lu, J., Deutsch, C., Electrostatics in the ribosomal tunnel modulate chain elongation rates. J Mol Biol 384 (2008), 73–86.
Joiret, M., Rapino, F., Close, P., Geris, L., A simple geometrical model of the electrostatic environment around the catalytic center of the ribosome and its significance on the elongation cycle. Comput Struct Biotechnol J 21 (2023), 3768–3795.
Kaiser, Christian, Tinoco, Ignacio, Probing the mechanisms of translation with force. Chem Rev, 114, 2014, 3266.
Bell, G.I., Models for the specific adhesion of cells to cells. Science 200 (1978), 618–627.
Bustamante, C., Chemla, Y.R., Forde, N.R., Izhaky, D., Mechanical processes in biochemistry. Annu Rev Biochem 73 (2004), 705–748.
Ribas-Arino, J., Marx, D., Covalent mechanochemistry: theoretical concepts and computational tools with applications to molecular nanomechanics. Chem Rev 112 (2012), 5412–5487.
Deutsch, C., Tunnel vision: insights from biochemical and biophysical studies. Ito, K., (eds.) Regulatory nascent polypeptides, 2014, Springer, Tokyo, 61–86.
Fried, S.D., Boxer, S.G., Electric fields and enzyme catalysis. Annu Rev Biochem 86 (2017), 387–415.
Mercier, E., Rodnina, M., Co-translational folding trajectory of the HEMK helical domain. Biochemistry, 57, 2020, 3460.
Liutkute, M., Maiti, M., Samatova, E., Enderlein, J., Rodnina, M.V., Gradual compaction of the nascent peptide during cotranslational folding on the ribosome. eLife, 9, 2020, e60895.
Morisaki, T., Lyon, K., DeLuca, K.F., DeLuca, J.G., English, B.P., Zhang, Z., et al. Real-time quantification of single RNA translation dynamics in living cells. Science, 352, 2016, 1425.
Dao Duc, K., Batra, S.S., Bhattacharya, N., Cate, J.H.D., Song, Y., Differences in the path to exit the ribosome across the three domains of life. Nucleic Acids Res 47:8 (2019), 4198–4210.