SFC-MS; Vitamin D3; Oily drug products; Impurities; Quality control; Validation
Abstract :
[en] Vitamin D3, an essential micronutrient, often requires supplementation via medicines or food supplements, which necessitate quality control (QC). This study presents the development of a method for detecting and quantifying seven impurities of vitamin D3 in oily drug products using supercritical fluid chromatography–mass spectrometry (SFC-MS). Targeted impurities include two esters of vitamin D3 and five non-esters including four that are isobaric to vitamin D3. Firstly, a screening study highlighted the Torus 1-AA column and acetonitrile modifier as adequate for the separation, followed by optimization of the SFC conditions. Secondly, make-up solvent composition and MS settings were optimized to reach high sensitivity. For both the separation and MS response, the screening design of experiments proved useful. Lastly, a fast saponification and liquid–liquid extraction method was developed, enabling efficient sample cleanup and impurities recovery from the complex oily matrix. The SFC-MS method suitability was assessed in two validation studies. The first study employed the ICH Q2 guideline for impurity limit test to demonstrate method specificity and establish a limit of detection (LOD) and a limit of quantification (LOQ) at 0.2% and 0.5%, respectively, for ester impurities. The second study conducted a comprehensive quantitative assessment for three non-ester impurities using a total error approach, determining method validity through accuracy profiles. The validated method exhibited reliable performance across impurity concentrations from 0.1% to 2.0%, with estimated LODs ranging from 2 to 7 ng/mL. This study further promotes SFC-MS as a valuable, versatile, and green tool for routine pharmaceutical QC.
Research Center/Unit :
CIRM - Centre Interdisciplinaire de Recherche sur le Médicament - ULiège
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Jambo, Hugues ; Université de Liège - ULiège > Département de pharmacie > Chimie analytique
Dispas, Amandine ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM) ; Université de Liège - ULiège > Département de pharmacie > Analyse des médicaments ; Université de Liège - ULiège > Département de pharmacie > Chimie analytique
Pérez-Mayán, Leticia; Universidade de Santiago de Compostela, 15782-Santiago de Compostela, Spain > Department of Analytical Chemistry > Nutrition and Food Sciences. Research Institute on Chemical and Biological Analysis (IAQBUS)
Rodríguez, Isaac; Universidade de Santiago de Compostela, 15782-Santiago de Compostela, Spain > Department of Analytical Chemistry > Nutrition and Food Sciences. Research Institute on Chemical and Biological Analysis (IAQBUS)
Ziemons, Eric ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM) ; Université de Liège - ULiège > Département de pharmacie > Chimie analytique verte pharmaceutique ; Université de Liège - ULiège > Département de pharmacie > Chimie analytique
Hubert, Philippe ; Université de Liège - ULiège > Département de pharmacie > Chimie analytique ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Language :
English
Title :
Comprehensive analysis of vitamin D3 impurities in oily drug products using supercritical fluid chromatography–mass spectrometry
Bouillon R, Manousaki D, Rosen C, Trajanoska K, Rivadeneira F, Richards JB. The health effects of vitamin D supplementation: evidence from human studies. Nat Rev Endocrinol. 2022;18(2):96-110. doi:10.1038/s41574-021-00593-z
Charoenngam N, Shirvani A, Holick MF. Vitamin D for skeletal and non-skeletal health: what we should know. J Clin Orthop Trauma. 2019;10(6):1082-1093. doi:10.1016/j.jcot.2019.07.004
Gombart AF, Pierre A, Maggini S. A review of micronutrients and the immune system–working in harmony to reduce the risk of infection. Nutrients. 2020;12(1):236. doi:10.3390/nu12010236
Amrein K, Scherkl M, Hoffmann M, et al. Vitamin D deficiency 2.0: an update on the current status worldwide. Eur J Clin Nutr. 2020;74(11):1498-1513. doi:10.1038/s41430-020-0558-y
Corsello A, Milani GP, Giannì ML, Dipasquale V, Romano C, Agostoni C. Different vitamin D supplementation strategies in the first years of life: a systematic review. Healthcare. 2022;10(6):1023. doi:10.3390/healthcare10061023
Jambo H, Dispas A, Hubert C, Lecomte F, Ziemons É, Hubert P. Generic SFC-MS methodology for the quality control of vitamin D3 oily formulations. J Pharm Biomed Anal. 2022;209:114492. doi:10.1016/j.jpba.2021.114492
Dispas A, Avohou HT, Lebrun P, Hubert P, Hubert C. ‘Quality by design’ approach for the analysis of impurities in pharmaceutical drug products and drug substances. TrAC - Trends Anal Chem. 2018;101:24-33. doi:10.1016/j.trac.2017.10.028
Liu KT, Chen CH. Determination of impurities in pharmaceuticals: why and how? In: Pereira P, Xavier S, eds. Quality Management and Quality Control—New Trends and Developments. IntechOpen; 2019. 10.5772/intechopen.83849
Jambo H, Hubert P, Dispas A. Supercritical fluid chromatography for pharmaceutical quality control: current challenges and perspectives. TrAC Trends Anal Chem. 2022;146:116486. doi:10.1016/j.trac.2021.116486
Hirsch AL. Industrial aspects of vitamin D. In: Vitamin D. Elsevier; 2011:73-93. 10.1016/B978-0-12-381978-9.10006-X
Mahmoodani F, Perera CO, Fedrizzi B, Abernethy G, Chen H. Degradation studies of cholecalciferol (vitamin D3) using HPLC-DAD, UHPLC-MS/MS and chemical derivatization. Food Chem. 2017;219:373-381. doi:10.1016/j.foodchem.2016.09.146
Ballard JM, Zhu L, Nelson ED, Seburg RA. Degradation of vitamin D3 in a stressed formulation: the identification of esters of vitamin D3 formed by a transesterification with triglycerides. J Pharm Biomed Anal. 2007;43(1):142-150. doi:10.1016/j.jpba.2006.06.036
Temova Ž, Roškar R. Stability-indicating HPLC–UV method for vitamin D3 determination in solutions, nutritional supplements and pharmaceuticals. J Chromatogr Sci. 2016;54(7):1180-1186. doi:10.1093/chromsci/bmw048
Tartivita KA, Sciarello JP, Rudy BC. High-performance liquid chromatographic analysis of vitamins I: quantitation of cholecalciferol or ergocalciferol in presence of photochemical isomers of the Provitamin and application to cholecalciferol resins. J Pharm Sci. 1976;65(7):1024-1027. doi:10.1002/jps.2600650717
Grady LT, Thakker KD. Stability of solid drugs: degradation of ergocalciferol (vitamin D2) and cholecalciferol (vitamin D3) at high humidities and elevated temperatures. J Pharm Sci. 1980;69(9):1099-1102. doi:10.1002/jps.2600690932
Petritz E, Tritthart T, Wintersteiger R. Determination of phylloquinone and cholecalciferol encapsulated in granulates formed by melt extrusion. J Biochem Biophys Methods. 2006;69(1–2):101-112. doi:10.1016/j.jbbm.2006.03.007
Borsje B, Craenen HAH, Esser RJE, Mulder FJ, Vries EJ. Analysis of fat-soluble vitamins. XVIII. Interlaboratory comparison of vitamin D assay methods. J AOAC Int. 1978;61(1):122-128. doi:10.1093/jaoac/61.1.122
Hofsass H, Grant A, Alicino NJ, Greenbaum SB. High-pressure liquid chromatographic determination of vitamin D3 in resins, oils, dry concentrates, and dry concentrates containing vitamin a. J AOAC Int. 1976;59(2):251-260. doi:10.1093/jaoac/59.2.251
Koytchev R, Alken RG, Vagaday M, Kunter U, Kirkov V. Differences in the bioavailability of dihydrotachysterol preparations. Eur J Clin Pharmacol. 1994;47(1):81-84. doi:10.1007/BF00193484
Qaw F, Calverley MJ, Schroeder NJ, Trafford DJ, Makin HL, Jones G. In vivo metabolism of the vitamin D analog, dihydrotachysterol. Evidence for formation of 1α,25- and 1β,25-dihydroxy-dihydrotachysterol metabolites and studies of their biological activity. J Biol Chem. 1993;268(1):282-292. doi:10.1016/S0021-9258(18)54147-8
Andri B, Lebrun P, Dispas A, et al. Optimization and validation of a fast supercritical fluid chromatography method for the quantitative determination of vitamin D3 and its related impurities. J Chromatogr a. 2017;1491:171-181. doi:10.1016/j.chroma.2017.01.090
Mahajan N, Deshmukh S, Farooqui M. Stability indicating method for known and unknown impurities profiling for cholecalciferol tablets: pharmaceutical sciences–pharmaceutical analysis. Int J Life Sci Pharm Res. 2021; 11(4):7-18. doi:10.22376/ijpbs/lpr.2021.11.4.P7–18
The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH); Q2 (R1) Validation of Analytical Procedures: Text and Methodology. https://www.ich.org/page/quality-guidelines
Hubert P, Nguyen-Huu JJ, Boulanger B, et al. Harmonization of strategies for the validation of quantitative analytical procedures: a SFSTP proposal—part I. J Pharm Biomed Anal. 2004;36(3):579-586. doi:10.1016/J.JPBA.2004.07.027
Hubert P, Nguyen-Huu JJ, Boulanger B, et al. Harmonization of strategies for the validation of quantitative analytical procedures: a SFSTP proposal—part II. J Pharm Biomed Anal. 2007;45(1):70-81. doi:10.1016/J.JPBA.2007.06.013
Hubert P, Nguyen-Huu JJ, Boulanger B, et al. Harmonization of strategies for the validation of quantitative analytical procedures: a SFSTP proposal—part III. J Pharm Biomed Anal. 2007;45(1):82-96. doi:10.1016/J.JPBA.2007.06.032
Hubert P, Nguyen-Huu JJ, Boulanger B, et al. Harmonization of strategies for the validation of quantitative analytical procedures: a SFSTP proposal: part IV. Examples of application. J Pharm Biomed Anal. 2008;48(3):760-771. doi:10.1016/J.JPBA.2008.07.018
Petruzziello F, Grand-Guillaume Perrenoud A, Thorimbert A, Fogwill M, Rezzi S. Quantitative profiling of endogenous fat-soluble vitamins and carotenoids in human plasma using an improved UHPSFC-ESI-MS interface. Anal Chem. 2017;89(14):7615-7622. doi:10.1021/acs.analchem.7b01476
West C, Lemasson E, Bertin S, Hennig P, Lesellier E. An improved classification of stationary phases for ultra-high performance supercritical fluid chromatography. J Chromatogr a. 2016;1440:212-228. doi:10.1016/j.chroma.2016.02.052
Jumaah F, Larsson S, Essén S, et al. A rapid method for the separation of vitamin D and its metabolites by ultra-high performance supercritical fluid chromatography-mass spectrometry. J Chromatogr a. 2016;1440:191-200. doi:10.1016/j.chroma.2016.02.043
Desfontaine V, Veuthey JL, Guillarme D. Evaluation of innovative stationary phase ligand chemistries and analytical conditions for the analysis of basic drugs by supercritical fluid chromatography. J Chromatogr a. 2016;1438:244-253. doi:10.1016/j.chroma.2016.02.029
Jones MD, Isaac G, Astarita G, et al. Lipid class separation using UPC2/MS. Waters Technical Note. 2013;2013:1-8.
Socas-Rodríguez B, Pilařová V, Sandahl M, Holm C, Turner C. Simultaneous determination of vitamin D and its hydroxylated and esterified metabolites by ultrahigh-performance supercritical fluid chromatography–tandem mass spectrometry. Anal Chem. 2022:acs.analchem.1c04016;94(7):3065-3073. doi:10.1021/acs.analchem.1c04016
Jones B, Nachtsheim CJ. Definitive screening designs with added two-level categorical factors. J Qual Technol. 2013;45(2):121-129. doi:10.1080/00224065.2013.11917921
Jones B, Nachtsheim CJ. Effective design-based model selection for definitive screening designs. Dent Tech. 2017;59(3):319-329. doi:10.1080/00401706.2016.1234979
Plachká K, Gazárková T, Škop J, Guillarme D, Svec F, Nováková L. Fast optimization of supercritical fluid chromatography–mass spectrometry interfacing using prediction equations. Anal Chem. 2022;94(11):4841-4849. doi:10.1021/acs.analchem.2c00154
Akbal L, Hopfgartner G. Effects of liquid post-column addition in electrospray ionization performance in supercritical fluid chromatography–mass spectrometry. J Chromatogr a. 2017;1517:176-184. doi:10.1016/j.chroma.2017.08.044
West C, Melin J, Ansouri H, Mengue MM. Unravelling the effects of mobile phase additives in supercritical fluid chromatography. Part I: polarity and acidity of the mobile phase. J Chromatogr a. 2017;1492:136-143. doi:10.1016/j.chroma.2017.02.066
Fujito Y, Izumi Y, Nakatani K, et al. Understanding the mechanism of CO2-assisted electrospray ionization for parameter optimization in supercritical fluid chromatography mass spectrometry. Anal Chim Acta. 2023;1246:340863. doi:10.1016/j.aca.2023.340863
Devaux J, Mignot M, Rouvière F, François I, Afonso C, Heinisch S. On-line reversed-phase liquid chromatography x supercritical fluid chromatography coupled to high-resolution mass spectrometry: a powerful tool for the characterization of advanced biofuels. J Chromatogr a. 1697;2023:463964. doi:10.1016/j.chroma.2023.463964
Yin S, Yang Y, Wu L, Li Y, Sun C. Recent advances in sample preparation and analysis methods for vitamin D and its analogues in different matrices. TrAC—Trends in Anal Chem. 2019;110:204-220. doi:10.1016/j.trac.2018.11.008
Borel P, Caillaud D, Cano NJ. Vitamin D bioavailability: state of the art. Crit Rev Food Sci Nutr. 2015;55(9):1193-1205. doi:10.1080/10408398.2012.688897
Dube DG, Euber JR, Hansen JW, Mosier Jr. AC, Napoli Jr. JL, Richardson GG., Inventors; Mead Johnson Nutrition Co, Assignee. Nutritional compositions containing vitamin D esters. U.S. Patent No. 5,422,127. June 6, 1995.
Mandar V. S., Inventor; Bristol–Myers Squibb Company, Assignee. Liquid vitamin formulations containing vitamin D esters. U.S. Patent No. 5,478,816. December 26, 1995.
Miller JN, Miller JC. Statistics and Chemometrics for Analytical Chemistry. 5th ed. Pearson Prentice Hall; 2005.