[en] Solid-phase microextraction and comprehensive multidimensional gas chromatography represent two milestone innovations that occurred in the field of separation science in the 1990s. They have a common root in their introduction and have found a perfect coupling in their evolution and applications. This review will focus on food analysis, where the paradigm has changed significantly over time, moving from a targeted analysis, focusing on a limited number of analytes at the time, to a more holistic approach for assessing quality in a larger sense. Indeed, not only some major markers or contaminants are considered, but a large variety of compounds and their possible interaction, giving rise to the field of foodomics. In order to obtain such detailed information and to answer more sophisticated questions related to food quality and authenticity, the use of SPME-GC × GC-MS has become essential for the comprehensive analysis of volatile and semi-volatile analytes. This article provides a critical review of the various applications of SPME-GC × GC in food analysis, emphasizing the crucial role this coupling plays in this field. Additionally, this review dwells on the importance of appropriate data treatment to fully harness the results obtained to draw accurate and meaningful conclusions.
Disciplines :
Chemistry Food science
Author, co-author :
Aspromonte, Juan; Laboratorio de Investigación y Desarrollo de Métodos Analíticos, LIDMA, Facultad de Ciencias Exactas (Universidad Nacional de La Plata, CIC-PBA, CONICET), Calle 47 Esq. 115, 1900, La Plata, Argentina
Mascrez, Steven ; Université de Liège - ULiège > TERRA Research Centre
Eggermont, Damien ; Université de Liège - ULiège > TERRA Research Centre
Purcaro, Giorgia ; Université de Liège - ULiège > TERRA Research Centre > Chemistry for Sustainable Food and Environmental Systems (CSFES)
Language :
English
Title :
Solid-phase microextraction coupled to comprehensive multidimensional gas chromatography for food analysis.
Golay MJE. Gas Chromatography. London, UK: Butterworths; 1958.
Arthur CL, Pawliszyn J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem. 1990;62:2145–8. 10.1021/ac00218a019. DOI: 10.1021/ac00218a019
Liu Z, Phillips JB. Comprehensive two-dimensional gas chromatography using an on-column thermal modulator interface. J Chromatogr Sci. 1991;29:227–31. 10.1093/chromsci/29.6.227. DOI: 10.1093/chromsci/29.6.227
Phillips JB, Luu D, Pawliszyn JB, Carle GC. Multiplex Gas Chromatography by Thermal Modulation of a Fused Silica Capillary Column. Anal Chem. 1985;57:2779–87. 10.1021/ac00291a010. DOI: 10.1021/ac00291a010
Pawliszyn J, Liu S. Sample introduction for capillary gas chromatography with laser desorption and optical fiber. Anal Bioanal Chem. 1987;1475–1478. https://doi.org/10.1201/b14923-8.
Adahchour M, Beens J, Vreuls RJJ, Batenburg AM, Rosing EAE, Brinkman UAT. Application of solid-phase micro-extraction and comprehensive two-dimensional gas chromatography (GC x GC) for flavour analysis. Chromatographia. 2002;55:361–7. 10.1007/BF02491673. DOI: 10.1007/BF02491673
Tranchida PQ, Maimone M, Purcaro G, Dugo P, Mondello L. The penetration of green sample-preparation techniques in comprehensive two-dimensional gas chromatography. TrAC Trends Anal Chem. 2015;71:74–84. 10.1016/j.trac.2015.03.011. DOI: 10.1016/j.trac.2015.03.011
Klimánková E, Holadová K, Hajšlová J, Čajka T, Poustka J, Koudela M. Aroma profiles of five basil (Ocimum basilicum L.) cultivars grown under conventional and organic conditions. Food Chem. 2008;107:464–72. 10.1016/j.foodchem.2007.07.062. DOI: 10.1016/j.foodchem.2007.07.062
Cordero C, Bicchi C, Rubiolo P. Group-type and fingerprint analysis of roasted food matrices (coffee and hazelnut samples) by comprehensive two-dimensional gas chromatography. J Agric Food Chem. 2008;56:7655–66. 10.1021/jf801001z. DOI: 10.1021/jf801001z
Cardeal ZL, de Souza PP, da Silva MDRG, Marriott PJ. Comprehensive two-dimensional gas chromatography for fingerprint pattern recognition in cachaça production. Talanta. 2008;74:793–9. 10.1016/j.talanta.2007.07.021. DOI: 10.1016/j.talanta.2007.07.021
Hollingsworth BV, Reichenbach SE, Tao Q, Visvanathan A. Comparative visualization for comprehensive two-dimensional gas chromatography. J Chromatogr A. 2006;1105:51–8. 10.1016/j.chroma.2005.11.074. DOI: 10.1016/j.chroma.2005.11.074
Squara S, Caratti A, Fina A, Liberto E, Spigolon N, Genova G, Castello G, Cincera I, Bicchi C, Cordero C. Artificial Intelligence decision-making tools based on comprehensive two-dimensional gas chromatography data: the challenge of quantitative volatilomics in food quality assessment. J Chromatogr A. 2023;1700: 464041. 10.1016/j.chroma.2023.464041. DOI: 10.1016/j.chroma.2023.464041
Caratti A, Squara S, Bicchi C, Tao Q, Geschwender D, Reichenbach SE, Ferrero F, Borreani G, Cordero C. Augmented visualization by computer vision and chromatographic fingerprinting on comprehensive two-dimensional gas chromatographic patterns: Unraveling diagnostic signatures in food volatilome. J Chromatogr A. 2023;1699: 464010. 10.1016/j.chroma.2023.464010. DOI: 10.1016/j.chroma.2023.464010
Reyes-Garcés N, Gionfriddo E, Gómez-Ríos GA, Alam MN, Boyacl E, Bojko B, Singh V, Grandy J, Pawliszyn J. Advances in Solid Phase Microextraction and Perspective on Future Directions. Anal Chem. 2018;90:302–60. 10.1021/acs.analchem.7b04502. DOI: 10.1021/acs.analchem.7b04502
Jimenez-Carvelo AM. Data mining/machine learning methods in foodomics. Curr Opin Food Sci. 2021;37:76–82. 10.1016/j.cofs.2020.09.008. DOI: 10.1016/j.cofs.2020.09.008
Stilo F, Bicchi C, Jimenez-Carvelo AM, Cuadros-Rodriguez L, Reichenbach SE, Cordero C. Chromatographic fingerprinting by comprehensive two-dimensional chromatography: Fundamentals and tools. TrAC - Trends Anal Chem. 2021;134: 116133. 10.1016/j.trac.2020.116133. DOI: 10.1016/j.trac.2020.116133
Bevilacqua M, Bro R, Marini F, Rinnan Å, Rasmussen MA, Skov T. Recent chemometrics advances for foodomics. TrAC Trends Anal Chem. 2017;96:42–51. 10.1016/j.trac.2017.08.011. DOI: 10.1016/j.trac.2017.08.011
Souza-Silva ÉA, Gionfriddo E, Pawliszyn J. A critical review of the state of the art of solid-phase microextraction of complex matrices II. Food analysis. TrAC Trends Anal Chem. 2015;71:236–248. 10.1016/j.trac.2015.04.018
Reyes-Garcés N, Gionfriddo E. Recent developments and applications of solid phase microextraction as a sample preparation approach for mass-spectrometry-based metabolomics and lipidomics. TrAC Trends Anal Chem. 2019;113:172–81. 10.1016/j.trac.2019.01.009. DOI: 10.1016/j.trac.2019.01.009
Tranchida PQ, Purcaro G, Dugo P, Mondello L, Purcaro G. Modulators for comprehensive two-dimensional gas chromatography. TrAC Trends Anal Chem. 2011;30:1437–61. 10.1016/j.trac.2011.06.010. DOI: 10.1016/j.trac.2011.06.010
Bahaghighat HD, Freye CE, Synovec RE. Recent advances in modulator technology for comprehensive two dimensional gas chromatography. TrAC Trends Anal Chem. 2019;113:379–91. 10.1016/j.trac.2018.04.016. DOI: 10.1016/j.trac.2018.04.016
Gallo M, Ferranti P. The evolution of analytical chemistry methods in foodomics. J Chromatogr A. 2016;1428:3–15. 10.1016/j.chroma.2015.09.007. DOI: 10.1016/j.chroma.2015.09.007
Mcgorrin RJ. One Hundred Years of Progress in Food Analysis. J Agric Food Chem. 2009;57:8076–88. 10.1021/jf900189s. DOI: 10.1021/jf900189s
Fennema OR. Food Chemistry, Third Edit. CRC Press, New York, NY; 1996.
Stafford N. History: The changing notion of food. Nature. 2010;468:S16–7. DOI: 10.1038/468S16a
Beckman AO (2004) Development of the Beckman pH Meter. Am Chem Soc Natl Hist Chem. Landmarks; 2004. p. 1–4. https://www.acs.org/education/whatischemistry/landmarks/beckman.html. Accessed 2 Jul 2023
Brock D. Revolutionary tools. Chem Herit. 2002;20:39.
Martin AJP, Synge RLM. A new form of chromatogram employing two liquid phases. Biochem J. 1941;35:1358–66. 10.1016/0968-0004(77)90204-3. DOI: 10.1016/0968-0004(77)90204-3
James A, Martin AJP. Gas-liquid partition chromatography: the separation and micro-estimation of volatile fatty acids from formic acid to dodecanoic acid. Biochem J. 1952;50:679–90. 10.1042/bj0610174. DOI: 10.1042/bj0610174
James AT, Martin AJP. Gas- Liquid Partition Chromatography. Analyst. 1952;77:915–32. DOI: 10.1039/an9527700915
Cremer E, Prior F. Anwendung der chromatographischen Methode zur Trennung von Gasen und zur Bestimmung von Adsorptionsenergien. Zeitschrift für Elektrochemie. 1950;4:66–70.
Cremer E, Müller R. Trennung und Bestimmung von Substanzen durch Chromatographie in der Gasphase. Zeitschrift für Elektrochemie. 1951;5:217–20.
Cremer E, Müller R. Trennung und quantitative Bestimmung kleiner Gasmengen durch Chromatographie. Mikrochim Acta. 1951;36–37:553–60. 10.1007/BF01427474. DOI: 10.1007/BF01427474
Gohlke RS. Time-of-Flight Mass Spectrometry and Gas-Liquid Partition Chromatography. Anal Chem. 1959;31:535–41. 10.1021/ac50164a024. DOI: 10.1021/ac50164a024
Cifuentes A. Food analysis and foodomics. J Chromatogr A. 2009;1216:7109. 10.1016/j.chroma.2009.09.018. DOI: 10.1016/j.chroma.2009.09.018
Fiehn O. Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics. 2001;2:155–68. 10.1002/cfg.82. DOI: 10.1002/cfg.82
Horning EC, Horning MG. Human metabolic profiles obtained by gc and gc/ms. J Chromatogr Sci. 1971;9:129–40. 10.1093/chromsci/9.3.129. DOI: 10.1093/chromsci/9.3.129
Cuadros-Rodríguez L, Ruiz-Samblás C, Valverde-Som L, Pérez-Castaño E, González-Casado A. Chromatographic fingerprinting: An innovative approach for food “identitation” and food authentication - A tutorial. Anal Chim Acta. 2016;909:9–23. 10.1016/j.aca.2015.12.042. DOI: 10.1016/j.aca.2015.12.042
Stilo F, Bicchi C, Reichenbach SE, Cordero C. Comprehensive two-dimensional gas chromatography as a boosting technology in food-omic investigations. J Sep Sci. 2021;44:1592–611. 10.1002/jssc.202100017. DOI: 10.1002/jssc.202100017
Stilo F, Cordero C, Sgorbini B, Bicchi C, Liberto E. Highly informative fingerprinting of extra-virgin olive oil volatiles: The role of high concentration-capacity sampling in combination with comprehensive two-dimensional gas chromatography. Separations. 2019;6:34. 10.3390/separations6030034. DOI: 10.3390/separations6030034
Mascrez S, Psillakis E, Purcaro G. A multifaceted investigation on the effect of vacuum on the headspace solid-phase microextraction of extra-virgin olive oil. Anal Chim Acta. 2019. 10.1016/j.aca.2019.12.053. DOI: 10.1016/j.aca.2019.12.053
Mascrez S, Purcaro G. Exploring multiple‐cumulative trapping solid‐phase microextraction for olive oil aroma profiling. J Sep Sci. 2020;43:1934–1941. 10.1002/jssc.202000098
Mascrez S, Purcaro G. Enhancement of volatile profiling using multiple-cumulative trapping solid-phase microextraction. Consideration on sample volume. Anal Chim Acta. 2020;1122:89–96. 10.1016/j.aca.2020.05.007. DOI: 10.1016/j.aca.2020.05.007
Spadafora ND, Mascrez S, McGregor L, Purcaro G. Exploring multiple-cumulative trapping solid-phase microextraction coupled to gas chromatography–mass spectrometry for quality and authenticity assessment of olive oil. Food Chem. 2022;383: 132438. 10.1016/j.foodchem.2022.132438. DOI: 10.1016/j.foodchem.2022.132438
Purcaro G, Cordero C, Liberto E, Bicchi C, Conte LS. Toward a definition of blueprint of virgin olive oil by comprehensive two-dimensional gas chromatography. J Chromatogr A. 2014;1334:101–11. 10.1016/j.chroma.2014.01.067. DOI: 10.1016/j.chroma.2014.01.067
Vaz-Freire LT, da Silva MDRG, Freitas AMC. Comprehensive two-dimensional gas chromatography for fingerprint pattern recognition in olive oils produced by two different techniques in Portuguese olive varieties Galega Vulgar, Cobrançosa e Carrasquenha. Anal Chim Acta. 2009;633:263–70. 10.1016/j.aca.2008.11.057. DOI: 10.1016/j.aca.2008.11.057
Lukić I, Carlin S, Horvat I, Vrhovsek U. Combined targeted and untargeted profiling of volatile aroma compounds with comprehensive two-dimensional gas chromatography for differentiation of virgin olive oils according to variety and geographical origin. Food Chem. 2019;270:403–14. 10.1016/j.foodchem.2018.07.133. DOI: 10.1016/j.foodchem.2018.07.133
Magagna F, Valverde-Som L, Ruíz-Samblás C, Cuadros-Rodríguez L, Reichenbach SE, Bicchi C, Cordero C. Combined untargeted and targeted fingerprinting with comprehensive two-dimensional chromatography for volatiles and ripening indicators in olive oil. Anal Chim Acta. 2016;936:245–58. 10.1016/j.aca.2016.07.005. DOI: 10.1016/j.aca.2016.07.005
Stilo F, Liberto E, Reichenbach SE, Tao Q, Bicchi C, Cordero C. Untargeted and Targeted Fingerprinting of Extra Virgin Olive Oil Volatiles by Comprehensive Two-Dimensional Gas Chromatography with Mass Spectrometry: Challenges in Long-Term Studies. J Agric Food Chem. 2019;67:5289–302. 10.1021/acs.jafc.9b01661. DOI: 10.1021/acs.jafc.9b01661
Stilo F, Liberto E, Reichenbach SE, Tao Q, Bicchi C, Cordero C. Exploring the extra-virgin olive oil volatilome by adding extra dimensions to comprehensive two-dimensional gas chromatography and Time-of-Flight mass spectrometry featuring tandem ionization: validation of ripening markers in headspace linearity conditio. J AOAC Int. 2023;104:274–87. 10.1093/jaoacint/qsaa095. DOI: 10.1093/jaoacint/qsaa095
Cordero C, Liberto E, Bicchi C, Rubiolo P, Schieberle P, Reichenbach SE, Tao Q. Profiling food volatiles by comprehensive two-dimensional ga schromatography coupled with mass spectrometry: Advanced fingerprinting approaches for comparative analysis of the volatile fraction of roasted hazelnuts (Corylus avellana L.) from different ori. J Chromatogr A. 2010;1217:5848–58. 10.1016/j.chroma.2010.07.006. DOI: 10.1016/j.chroma.2010.07.006
Cialiè Rosso M, Liberto E, Spigolon N, Fontana M, Somenzi M, Bicchi C, Cordero C. Evolution of potent odorants within the volatile metabolome of high-quality hazelnuts (Corylus avellana L.): evaluation by comprehensive two-dimensional gas chromatography coupled with mass spectrometry. Anal Bioanal Chem. 2018;410:3491–506. 10.1007/s00216-017-0832-6. DOI: 10.1007/s00216-017-0832-6
Cialiè Rosso M, Mazzucotelli M, Bicchi C, Charron M, Manini F, Menta R, Fontana M, Reichenbach SE, Cordero C. Adding extra-dimensions to hazelnuts primary metabolome fingerprinting by comprehensive two-dimensional gas chromatography combined with time-of-flight mass spectrometry featuring tandem ionization: Insights on the aroma potential. J Chromatogr A. 2020;1614. https://doi.org/10.1016/j.chroma.2019.460739.
Humston EM, Knowles JD, McShea A, Synovec RE. Quantitative assessment of moisture damage for cacao bean quality using two-dimensional gas chromatography combined with time-of-flight mass spectrometry and chemometrics. J Chromatogr A. 2010;1217:1963–70. 10.1016/j.chroma.2010.01.069. DOI: 10.1016/j.chroma.2010.01.069
Oliveira LF, Braga SCGN, Augusto F, Hashimoto JC, Efraim P, Poppi RJ. Differentiation of cocoa nibs from distinct origins using comprehensive two-dimensional gas chromatography and multivariate analysis. Food Res Int. 2016;90:133–8. 10.1016/j.foodres.2016.10.047. DOI: 10.1016/j.foodres.2016.10.047
Perotti P, Cordero C, Bortolini C, Rubiolo P, Bicchi C, Liberto E. Cocoa smoky off-flavor: Chemical characterization and objective evaluation for quality control. Food Chem. 2020;309: 125561. 10.1016/j.foodchem.2019.125561. DOI: 10.1016/j.foodchem.2019.125561
Braga SCGN, Oliveira LF, Hashimoto JC, Gama MR, Efraim P, Poppi RJ, Augusto F. Study of volatile profile in cocoa nibs, cocoa liquor and chocolate on production process using GC × GC-QMS. Microchem J. 2018;141:353–61. 10.1016/j.microc.2018.05.042. DOI: 10.1016/j.microc.2018.05.042
Magagna F, Guglielmetti A, Liberto E, Reichenbach SE, Allegrucci E, Gobino G, Bicchi C, Cordero C. Comprehensive Chemical Fingerprinting of High-Quality Cocoa at Early Stages of Processing: Effectiveness of Combined Untargeted and Targeted Approaches for Classification and Discrimination. J Agric Food Chem. 2017;65:6329–41. 10.1021/acs.jafc.7b02167. DOI: 10.1021/acs.jafc.7b02167
Magagna F, Liberto E, Reichenbach SE, Tao Q, Carretta A, Cobelli L, Giardina M, Bicchi C, Cordero C. Advanced fingerprinting of high-quality cocoa: Challenges in transferring methods from thermal to differential-flow modulated comprehensive two dimensional gas chromatography. J Chromatogr A. 2018;1536:122–36. 10.1016/j.chroma.2017.07.014. DOI: 10.1016/j.chroma.2017.07.014
Cordero C, Guglielmetti A, Bicchi C, Liberto E, Baroux L, Merle P, Tao Q, Reichenbach SE. Comprehensive two-dimensional gas chromatography coupled with time of flight mass spectrometry featuring tandem ionization: Challenges and opportunities for accurate fingerprinting studies. J Chromatogr A. 2019;1597:132–41. 10.1016/j.chroma.2019.03.025. DOI: 10.1016/j.chroma.2019.03.025
Cordero C, Rubiolo P, Reichenbach SE, Carretta A, Cobelli L, Giardina M, Bicchi C. Method translation and full metadata transfer from thermal to differential flow modulated comprehensive two dimensional gas chromatography: Profiling of suspected fragrance allergens. J Chromatogr A. 2017;1480:70–82. 10.1016/j.chroma.2016.12.011. DOI: 10.1016/j.chroma.2016.12.011
Risticevic S, DeEll JR, Pawliszyn J. Solid phase microextraction coupled with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry for high-resolution metabolite profiling in apples: Implementation of structured separations for optimization of sample preparation. J Chromatogr A. 2012;1251:208–18. 10.1016/j.chroma.2012.06.052. DOI: 10.1016/j.chroma.2012.06.052
Li S, Hu Y, Liu W, Chen Y, Wang F, Lu X, Zheng W. Untargeted volatile metabolomics using comprehensive two-dimensional gas chromatography-mass spectrometry – A solution for orange juice authentication. Talanta. 2020;217: 121038. 10.1016/j.talanta.2020.121038. DOI: 10.1016/j.talanta.2020.121038
Johanningsmeier SD, McFeeters RF. Metabolic footprinting of Lactobacillus buchneri strain LA1147 during anaerobic spoilage of fermented cucumbers. Int J Food Microbiol. 2015;215:40–8. 10.1016/j.ijfoodmicro.2015.08.004. DOI: 10.1016/j.ijfoodmicro.2015.08.004
Cheong KW, Tan CP, Mirhosseini H, Chin ST, Che Man YB, Hamid NSA, Osman A, Basri M. Optimization of equilibrium headspace analysis of volatile flavor compounds of malaysian soursop (Annona muricata): Comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS). Food Chem. 2011;125:1481–9. 10.1016/j.foodchem.2010.10.067. DOI: 10.1016/j.foodchem.2010.10.067
Schmarr HG, Bernhardt J. Profiling analysis of volatile compounds from fruits using comprehensive two-dimensional gas chromatography and image processing techniques. J Chromatogr A. 2010;1217:565–74. 10.1016/j.chroma.2009.11.063. DOI: 10.1016/j.chroma.2009.11.063
Steingass CB, Jutzi M, Müller J, Carle R, Schmarr HG. Ripening-dependent metabolic changes in the volatiles of pineapple (Ananas comosus (L.) Merr.) fruit: II. Multivariate statistical profiling of pineapple aroma compounds based on comprehensive two-dimensional gas chromatography-mass spectrometry. Anal Bioanal Chem. 2015;407:2609–24. 10.1007/s00216-015-8475-y. DOI: 10.1007/s00216-015-8475-y
De Grazia S, Gionfriddo E, Pawliszyn J. A new and efficient Solid Phase Microextraction approach for analysis of high fat content food samples using a matrix-compatible coating. Talanta. 2017;167:754–60. 10.1016/j.talanta.2017.01.064. DOI: 10.1016/j.talanta.2017.01.064
Souza-Silva ÉA, Gionfriddo E, Shirey R, Sidisky L, Pawliszyn J. Methodical evaluation and improvement of matrix compatible PDMS-overcoated coating for direct immersion solid phase microextraction gas chromatography (DI-SPME-GC)-based applications. Anal Chim Acta. 2016;920:54–62. 10.1016/j.aca.2016.03.015. DOI: 10.1016/j.aca.2016.03.015
Gionfriddo E, Souza-Silva ÉA, Ho TD, Anderson JL, Pawliszyn J. Exploiting the tunable selectivity features of polymeric ionic liquid-based SPME sorbents in food analysis. Talanta. 2018;188:522–30. 10.1016/j.talanta.2018.06.011. DOI: 10.1016/j.talanta.2018.06.011
Magagna F, Cordero C, Cagliero C, Liberto E, Rubiolo P, Sgorbini B, Bicchi C. Black tea volatiles fingerprinting by comprehensive two-dimensional gas chromatography – Mass spectrometry combined with high concentration capacity sample preparation techniques: Toward a fully automated sensomic assessment. Food Chem. 2017;225:276–87. 10.1016/j.foodchem.2017.01.003. DOI: 10.1016/j.foodchem.2017.01.003
Ntlhokwe G, Tredoux AGJ, Górecki T, Edwards M, Vestner J, Muller M, Erasmus L, Joubert E, Christel Cronje J, de Villiers A. Analysis of honeybush tea (Cyclopia spp.) volatiles by comprehensive two-dimensional gas chromatography using a single-stage thermal modulator. Anal Bioanal Chem. 2017;409:4127–38. 10.1007/s00216-017-0360-4. DOI: 10.1007/s00216-017-0360-4
Zhu Y, Lv HP, Shao CY, Kang S, Zhang Y, Guo L, Dai WD, Tan JF, Peng QH, Lin Z. Identification of key odorants responsible for chestnut-like aroma quality of green teas. Food Res Int. 2018;108:74–82. 10.1016/j.foodres.2018.03.026. DOI: 10.1016/j.foodres.2018.03.026
Qi C, Tianyang G, Qiong W, Jian Y, Renyi L, Peng W, Shaotong J, Yiyang D. Evaluation of orchid-like aroma between different grades of taiping houkui tea by solid-phase microextraction and comprehensive two-dimensional gas chromatography coupled with time-of-fight mass spectrometry. J AOAC Int. 2021;103:433–8. 10.5740/JAOACINT.19-0266. DOI: 10.5740/JAOACINT.19-0266
Yang Y, Hua J, Deng Y, Jiang Y, Qian MC, Wang J, Li J, Zhang M, Dong C, Yuan H. Aroma dynamic characteristics during the process of variable-temperature final firing of Congou black tea by electronic nose and comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. Food Res Int. 2020;137: 109656. 10.1016/j.foodres.2020.109656. DOI: 10.1016/j.foodres.2020.109656
Zhu JC, Niu Y, Xiao ZB. Characterization of the key aroma compounds in Laoshan green teas by application of odour activity value (OAV), gas chromatography-mass spectrometry-olfactometry (GC-MS-O) and comprehensive two-dimensional gas chromatography mass spectrometry (GC × GC-qMS). Food Chem. 2021;339: 128136. 10.1016/j.foodchem.2020.128136. DOI: 10.1016/j.foodchem.2020.128136
Pua A, Huang Y, Vivian Goh RM, Ee KH, Li L, Cornuz M, Lassabliere B, Jublot L, Liu SQ, Yu B. Multidimensional gas chromatography of organosulfur compounds in coffee and structure-odor analysis of 2-methyltetrahydrothiophen-3-one. J Agric Food Chem. 2023;71:4337–45. 10.1021/acs.jafc.2c08842. DOI: 10.1021/acs.jafc.2c08842
Al Rashed N, Gerlach C, Guenther K. Determination of nonylphenol in selected foods and identification of single isomers in a coffee sample by comprehensive two-dimensional gas chromatography-Time of Flight mass spectrometry. Anal Lett. 2023;0:1–19. https://doi.org/10.1080/00032719.2023.2180018.
Cordero C, Liberto E, Bicchi C, Rubiolo P, Reichenbach SE, Tian X, Tao Q. Targeted and non-targeted approaches for complex natural sample profiling by GC×GC-qMS. J Chromatogr Sci. 2010;48:251–61. 10.1093/chromsci/48.4.251. DOI: 10.1093/chromsci/48.4.251
Eggermont D, Spadafora ND, Aspromonte J, Purcaro G. Unraveling the impact of the capsule material on the aroma of brewed coffee by headspace analysis using a HiSorb probe followed by reverse fill/flush flow modulation GC×GC-MS. Anal Bioanal Chem. 2023;415:2511–21. 10.1007/s00216-022-04457-x. DOI: 10.1007/s00216-022-04457-x
Eggermont D, Spadafora ND, Aspromonte J, Pellegrino R, Purcaro G. Exploring different high-capacity tools and extraction modes to characterize the aroma of brewed coffee. Anal Bioanal Chem. 2023. 10.1007/s00216-023-04654-2. DOI: 10.1007/s00216-023-04654-2
Robinson AL, Boss PK, Heymann H, Solomon PS, Trengove RD. Development of a sensitive non-targeted method for characterizing the wine volatile profile using headspace solid-phase microextraction comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. J Chromatogr A. 2011;1218:504–17. 10.1016/j.chroma.2010.11.008. DOI: 10.1016/j.chroma.2010.11.008
Weldegergis BT, De VA, McNeish C, Seethapathy S, Mostafa A, Górecki T, Crouch AM. Characterisation of volatile components of Pinotage wines using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC x GC-TOFMS). Food Chem. 2011;129:188–99. 10.1016/j.foodchem.2010.11.157. DOI: 10.1016/j.foodchem.2010.11.157
Welke JE, Manfroi V, Zanus M, Lazarotto M, Alcaraz Zini C. Characterization of the volatile profile of Brazilian Merlot wines through comprehensive two dimensional gas chromatography time-of-flight mass spectrometric detection. J Chromatogr A. 2012;1226:124–39. 10.1016/j.chroma.2012.01.002. DOI: 10.1016/j.chroma.2012.01.002
Welke JE, Zanus M, Lazzarotto M, Alcaraz Zini C. Quantitative analysis of headspace volatile compounds using comprehensive two-dimensional gas chromatography and their contribution to the aroma of Chardonnay wine. Food Res Int. 2014;59:85–99. 10.1016/j.foodres.2014.02.002. DOI: 10.1016/j.foodres.2014.02.002
Dugo G, Franchina FA, Scandinaro MR, Bonaccorsi I, Cicero N, Tranchida PQ, Mondello L. Elucidation of the volatile composition of marsala wines by using comprehensive two-dimensional gas chromatography. Food Chem. 2014;142:262–8. 10.1016/j.foodchem.2013.07.061. DOI: 10.1016/j.foodchem.2013.07.061
Ieri F, Campo M, Cassiani C, Urciuoli S, Jurkhadze K, Romani A. Analysis of aroma and polyphenolic compounds in Saperavi red wine vinified in Qvevri. Food Sci Nutr. 2021;9:6492–500. 10.1002/fsn3.2556. DOI: 10.1002/fsn3.2556
Schmarr HG, Bernhardt J, Fischer U, Stephan A, Müller P, Durner D. Two-dimensional gas chromatographic profiling as a tool for a rapid screening of the changes in volatile composition occurring due to microoxygenation of red wines. Anal Chim Acta. 2010;672:114–23. 10.1016/j.aca.2010.05.002. DOI: 10.1016/j.aca.2010.05.002
Nicolli KP, Biasoto ACT, Souza-Silva ÉA, Guerra CC, dos Santos HP, Welke JE, Zini CA. Sensory, olfactometry and comprehensive two-dimensional gas chromatography analyses as appropriate tools to characterize the effects of vine management on wine aroma. Food Chem. 2018;243:103–17. 10.1016/j.foodchem.2017.09.078. DOI: 10.1016/j.foodchem.2017.09.078
Bordiga M, Rinaldi M, Locatelli M, Piana G, Travaglia F, Coïsson JD, Arlorio M. Characterization of Muscat wines aroma evolution using comprehensive gas chromatography followed by a post-analytic approach to 2D contour plots comparison. Food Chem. 2013;140:57–67. 10.1016/j.foodchem.2013.02.051. DOI: 10.1016/j.foodchem.2013.02.051
Perestrelo R, Barros AS, Câmara JS, Rocha SM. In-depth search focused on furans, lactones, volatile phenols, and acetals as potential age markers of Madeira wines by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry combined with solid phase microextraction. J Agric Food Chem. 2011;59:3186–204. 10.1021/jf104219t. DOI: 10.1021/jf104219t
Bordiga M, Piana G, Coïsson JD, Travaglia F, Arlorio M. Headspace solid-phase micro extraction coupled to comprehensive two-dimensional with time-of-flight mass spectrometry applied to the evaluation of Nebbiolo-based wine volatile aroma during ageing. Int J Food Sci Technol. 2014;49:787–96. 10.1111/ijfs.12366. DOI: 10.1111/ijfs.12366
Perestrelo R, Petronilho S, Câmara JS, Rocha SM. Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry combined with solid phase microextraction as a powerful tool for quantification of ethyl carbamate in fortified wines. The case study of Madeira wine. J Chromatogr A. 2010;1217:3441–5. 10.1016/j.chroma.2010.03.027. DOI: 10.1016/j.chroma.2010.03.027
Jeleń HH, Dziadas M, Majcher M. Different headspace solid phase microextraction - Gas chromatography/mass spectrometry approaches to haloanisoles analysis in wine. J Chromatogr A. 2013;1313:185–93. 10.1016/j.chroma.2013.07.080. DOI: 10.1016/j.chroma.2013.07.080
Song X, Zhu L, Wang X, Zheng F, Zhao M, Liu Y, Li H, Zhang F, Zhang Y, Chen F. Characterization of key aroma-active sulfur-containing compounds in Chinese Laobaigan Baijiu by gas chromatography-olfactometry and comprehensive two-dimensional gas chromatography coupled with sulfur chemiluminescence detection. Food Chem. 2019;297: 124959. 10.1016/j.foodchem.2019.124959. DOI: 10.1016/j.foodchem.2019.124959
Yan Y, Chen S, Nie Y, Xu Y. Characterization of volatile sulfur compounds in soy sauce aroma type Baijiu and changes during fermentation by GC × GC-TOFMS, organoleptic impact evaluation, and multivariate data analysis. Food Res Int. 2020;131: 109043. 10.1016/j.foodres.2020.109043. DOI: 10.1016/j.foodres.2020.109043
Vyviurska O, Matura F, Furdíková K, Špánik I. Volatile fingerprinting of the plum brandies produced from different fruit varieties. J Food Sci Technol. 2017;54:4284–301. 10.1007/s13197-017-2900-5. DOI: 10.1007/s13197-017-2900-5
Mogollón NGS, Alexandrino GL, de Almeida JR, Niño-Ruiz Z, Peña-Delgado JG, Torres-Gutiérrez R, Augusto F. Comprehensive two-dimensional gas chromatography-mass spectrometry combined with multivariate data analysis for pattern recognition in Ecuadorian spirits. Chem Cent J. 2018;12:1–10. 10.1186/s13065-018-0470-x. DOI: 10.1186/s13065-018-0470-x
Zhou Z, Ji Z, Liu S, Han X, Zheng F, Mao J. Characterization of the volatile compounds of huangjiu using comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry (GC × GC-TOFMS). J Food Process Preserv. 2019;43:1–10. 10.1111/jfpp.14159. DOI: 10.1111/jfpp.14159
Wang L, Fan S, Yan Y, Yang L, Chen S, Xu Y. Characterization of Potent Odorants Causing a Pickle-like Off-Odor in Moutai-Aroma Type Baijiu by Comparative Aroma Extract Dilution Analysis, Quantitative Measurements, Aroma Addition, and Omission Studies. J Agric Food Chem. 2020;68:1666–77. 10.1021/acs.jafc.9b07238. DOI: 10.1021/acs.jafc.9b07238
He Y, Liu Z, Qian M, Yu X, Xu Y, Chen S. Unraveling the chemosensory characteristics of strong-aroma type Baijiu from different regions using comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry and descriptive sensory analysis. Food Chem. 2020;331: 127335. 10.1016/j.foodchem.2020.127335. DOI: 10.1016/j.foodchem.2020.127335
Mu X, Lu J, Gao M, Li C, Chen S. Optimization and Validation of a Headspace Solid-Phase Chromatography Time-of-Flight Mass Spectrometric Detection. Molecules. 2021;26:6910. DOI: 10.3390/molecules26226910
He X, Jeleń HH. Comprehensive two-dimensional gas chromatography–time of flight mass spectrometry (GC×GC-TOFMS) in conventional and reversed column configuration for the investigation of Baijiu aroma types and regional origin. J Chromatogr A 1636. 2021. 10.1016/j.chroma.2020.461774.
Yao F, Yi B, Shen C, Tao F, Liu Y, Lin Z, Xu P. Chemical Analysis of the Chinese Liquor Luzhoulaojiao by Comprehensive Two-Dimensional Gas Chromatography/Time-of-Flight Mass Spectrometry. Sci Rep. 2015;5:1–6. 10.1038/srep09553. DOI: 10.1038/srep09553
Capobiango M, Mastello RB, Chin S-T, Oliveira ES, Cardeal ZL, Marriott PJ. Identification of aroma-active volatiles in banana Terra spirit using multidimensional gas chromatography with simultaneous mass spectrometry and olfactometry detection. J Chromatogr A. 2015;1388:227–35. 10.1016/j.chroma.2015.02.029.
Zhang P, Carlin S, Lotti C, Mattivi F, Vrhovsek U. On sample preparation methods for fermented beverage VOCs profiling by GCxGC-TOFMS. Metabolomics. 2020;16:1–10. 10.1007/s11306-020-01718-7. DOI: 10.1007/s11306-020-01718-7
Wieczorek MN, Zhou W, Pawliszyn J. Sequential thin film-solid phase microextraction as a new strategy for addressing displacement and saturation effects in food analysis. Food Chem. 2022;389: 133038. 10.1016/j.foodchem.2022.133038. DOI: 10.1016/j.foodchem.2022.133038
Giannakou K, Visinoni F, Zhang P, Nathoo N, Jones P, Cotterrell M, Vrhovsek U, Delneri D. Biotechnological exploitation of Saccharomyces jurei and its hybrids in craft beer fermentation uncovers new aroma combinations. Food Microbiol. 2021;100: 103838. 10.1016/j.fm.2021.103838. DOI: 10.1016/j.fm.2021.103838
Martins C, Brandão T, Almeida A, Rocha SM. Insights on beer volatile profile: Optimization of solid-phase microextraction procedure taking advantage of the comprehensive two-dimensional gas chromatography structured separation. J Sep Sci. 2015;38:2140–8. 10.1002/jssc.201401388. DOI: 10.1002/jssc.201401388
Stefanuto PH, Perrault KA, Dubois LM, L’Homme B, Allen C, Loughnane C, Ochiai N, Focant JF. Advanced method optimization for volatile aroma profiling of beer using two-dimensional gas chromatography time-of-flight mass spectrometry. J Chromatogr A. 2017;1507:45–52. 10.1016/j.chroma.2017.05.064. DOI: 10.1016/j.chroma.2017.05.064
Zhang W, Liu T, Brown A, Ueland M, Forbes SL, Su SW. The use of electronic nose for the classification of blended and single malt Scotch whisky. IEEE Sens J. 2022;22:7015–21. 10.1109/JSEN.2022.3147185. DOI: 10.1109/JSEN.2022.3147185
Ayala-Cabrera JF, Montero L, Sahlabji T, Schmitz OJ. Comprehensive two-dimensional gas chromatography with flow modulator coupled via tube plasma ionization to an atmospheric pressure high-resolution mass spectrometer for the analysis of vermouth volatile profile. Anal Bioanal Chem. 2023;415:2561–73. 10.1007/s00216-023-04688-6. DOI: 10.1007/s00216-023-04688-6
Pacyński M, Wojtasiak RZ, Mildner-Szkudlarz S. Improving the aroma of gluten-free bread. LWT. 2015;63:706–13. 10.1016/j.lwt.2015.03.032. DOI: 10.1016/j.lwt.2015.03.032
Liao S, Han J, Jiang C, Zhou B, Jiang Z, Tang J, Ding W, Che Z, Lin H. HS-SPME-GC × GC/MS combined with multivariate statistics analysis to investigate the flavor formation mechanism of tank-fermented broad bean paste. Food Chem X. 2023;17: 100556. 10.1016/j.fochx.2022.100556. DOI: 10.1016/j.fochx.2022.100556
Szymandera-Buszka K, Zielińska-Dawidziak M, Makowska A, Majcher M, Jędrusek-Golińska A, Kaczmarek A, Niedzielski P. Quality assessment of corn snacks enriched with soybean ferritin among young healthy people and patient with Crohn’s disease: the effect of extrusion conditions. Int J Food Sci Technol. 2021;56:6463–73. 10.1111/ijfs.15328. DOI: 10.1111/ijfs.15328
Fang S, Liu S, Song J, Huang Q, Xiang Z. Recognition of pathogens in food matrixes based on the untargeted in vivo microbial metabolite profiling via a novel SPME/GC × GC-QTOFMS approach. Food Res Int. 2021;142: 110213. 10.1016/j.foodres.2021.110213. DOI: 10.1016/j.foodres.2021.110213
Cajka T, Hajslova J, Pudil F, Riddellova K. Traceability of honey origin based on volatiles pattern processing by artificial neural networks. J Chromatogr A. 2009;1216:1458–62. 10.1016/j.chroma.2008.12.066. DOI: 10.1016/j.chroma.2008.12.066
Stanimirova I, Üstün B, Cajka T, Riddelova K, Hajslova J, Buydens LMC, Walczak B. Tracing the geographical origin of honeys based on volatile compounds profiles assessment using pattern recognition techniques. Food Chem. 2010;118:171–6. 10.1016/j.foodchem.2009.04.079. DOI: 10.1016/j.foodchem.2009.04.079
Rivellino SR, Hantao LW, Risticevic S, Carasek E, Pawliszyn J, Augusto F. Detection of extraction artifacts in the analysis of honey volatiles using comprehensive two-dimensional gas chromatography. Food Chem. 2013;141:1828–33. 10.1016/j.foodchem.2013.05.003. DOI: 10.1016/j.foodchem.2013.05.003
Cordero C, Cagliero C, Liberto E, Nicolotti L, Rubiolo P, Sgorbini B, Bicchi C. High concentration capacity sample preparation techniques to improve the informative potential of two-dimensional comprehensive gas chromatography-mass spectrometry: Application to sensomics. J Chromatogr A. 2013;1318:1–11. 10.1016/j.chroma.2013.09.065. DOI: 10.1016/j.chroma.2013.09.065
Shen DY, Li MK, Song HL, Zou TT, Zhang L, Xiong J. Characterization of aroma in response surface optimized no-salt bovine bone protein extract by switchable GC/GC×GC-olfactometry-mass spectrometry, electronic nose, and sensory evaluation. LWT. 2021;147:111559. 10.1016/j.lwt.2021.111559. DOI: 10.1016/j.lwt.2021.111559
Zhao M, Li T, Yang F, Cui X, Zou T, Song H, Liu Y. Characterization of key aroma-active compounds in Hanyuan Zanthoxylum bungeanum by GC-O-MS and switchable GC × GC-O-MS. Food Chem. 2022;385: 132659. 10.1016/j.foodchem.2022.132659. DOI: 10.1016/j.foodchem.2022.132659
Li W, Zheng L, Xiao Y, Li L, Wang N, Che Z, Wu T. Insight into the aroma dynamics of Dongpo pork dish throughout the production process using electronic nose and GC×GC-MS. LWT. 2022;169: 113970. 10.1016/j.lwt.2022.113970. DOI: 10.1016/j.lwt.2022.113970
Wang J, Chen L, Liu Y, Olajide TM, Jiang Y, Cao W. Identification of key aroma-active compounds in beef tallow varieties using flash GC electronic nose and GC × GC-TOF/MS. Eur Food Res Technol. 2022;248:1733–47. 10.1007/s00217-022-04001-2. DOI: 10.1007/s00217-022-04001-2
Kokkat JG, Shelvy S, Fayad AM, Shabeer TPA, Umadevi P, Kale R, Angadi UB, Iquebal MA, Jaiswal S, Rai A, Kumar D. In silico assisted identification of peppery aroma compound ‘rotundone’ backbone genes from black pepper. J Biomol Struct Dyn. 2022;40:6398–404. 10.1080/07391102.2021.1883113. DOI: 10.1080/07391102.2021.1883113