Plant Science; Agronomy and Crop Science; Biochemistry, Genetics and Molecular Biology (miscellaneous); Modeling and Simulation
Abstract :
[en] In the context of climate change, in-season and longer-term yield predictions are needed to anticipate local and regional food crises and propose adaptations to farmers’ practices. Mechanistic models and machine learning are two modelling options to consider in this perspective. In this study, regression (MR) and Random Forest (RF) models were calibrated for wheat yield prediction in Morocco, using data collected from 125 farmers’ wheat fields. Additionally , MR and RF models were calibrated both with or without remotely-sensed leaf area index (LAI), while considering all farmers’ fields, or specifically to agroecological zoning in Morocco. The same farmers’ fields were simulated using a mechanistic model (APSIM-wheat). We compared the predictive performances of the empirical models and APSIM-wheat. Results showed that both MR and RF showed rather good predictive quality (NRMSEs below 35%), but were always outperformed by APSIM model. Both RF and MR selected remotely-sensed LAI at heading, climate variables (maximal temperatures at emergence and tillering), and fertilization practices (amount of nitrogen applied at heading) as major yield predictors. Integration of remotely-sensed LAI in the calibration process reduced NRMSE of 4.5% and 1.8 % on average for MR and RF models respectively. Calibration of region specific models did not significantly improve the predictive. These findings lead to the conclusion that mechanistic models are better at capturing the impacts of in-season climate variability and would be preferred to support short term tactical adjustments to farmers’ practices, while machine learning models are easier to use in the perspective of mid-term regional prediction.
Research Center/Unit :
SPHERES - ULiège
Disciplines :
Agriculture & agronomy
Author, co-author :
Mamassi, Achraf ; Université de Liège - ULiège > Sphères ; AgroBioSciences Program, Mohammed VI Polytechnic University , Benguerir 43150, Morocco
Lang, Marie ; Université de Liège - ULiège > Département des sciences et gestion de l'environnement (Arlon Campus Environnement) > Eau, Environnement, Développement
Tychon, Bernard ; Université de Liège - ULiège > Département des sciences et gestion de l'environnement (Arlon Campus Environnement)
Lahlou, Mouanis; Department of Statistics and Computer Science, Institute of Agronomy and Veterinary Hassan II , Rabat 10101, Morocco
Abi Saab MT, El Alam R, Jomaa I, Skaf S, Fahed S, Albrizio R, Todorovic M. 2021. Coupling remote sensing data and AquaCrop model for simulation of winter wheat growth under rainfed and irrigated conditions in a mediterranean environment. Agronomy 11:2265. doi:10.3390/ agronomy11112265.
Ahmed M, Akram MN, Asim M, Aslam M, Hassan F, Higgins S, Stöckle CO, Hoogenboom G. 2016. Calibration and validation of APSIM-wheat and CERES-Wheat for spring wheat under rainfed conditions: models evaluation and application. Computers and Electronics in Agriculture 123:384–401. doi:10.1016/j.compag.2016.03.015.
Aït el Mekki A. 2006. Cereal politics in Morocco. Agri.Med: agriculture, fishery, food and sustainable rural development in the Mediterranean region. Editor: CIHEAM, Collection: Annual Report.
Andarzian B, Bakhshandeh AM, Bannayan M, Emam Y, Fathi G, Alami Saeed K. 2008. WheatPot: a simple model for spring wheat yield potential using monthly weather data. Biosystems Engineering 99:487–495. doi:10.1016/j.biosystemseng.2007.12.008.
Ansarifar J, Wang L, Archontoulis SV. 2021. An interaction regression model for crop yield prediction. Scientific Reports 11:1–14. doi:10.1038/s41598-021-97221-7.
Asseng S, Ewert F, Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Boote KJ, Thorburn PJ, Rötter RP, Cammarano D, Brisson N, Basso B, Martre P, Aggarwal PK, Angulo C, Bertuzzi P, Biernath C, Challinor AJ, Doltra J, Gayler S, Goldberg R, Grant R, Heng L, Hooker J, Hunt LA, Ingwersen J, Izaurralde RC, Kersebaum KC, Müller C, Naresh Kumar S, Nendel C, O’Leary G, Olesen JE, Osborne TM, Palosuo T, Priesack E, Ripoche D, Semenov MA, Shcherbak I, Steduto P, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Travasso M, Waha K, Wallach D, White JW, Williams JR, Wolf J. 2013. Uncertainty in simulating wheat yields under climate change. Nature Climate Change 3:827–832. doi:10.1038/nclimate1916.
Asseng S, Martre P, Maiorano A, Rötter RP, O’Leary GJ, Fitzgerald GJ, Girousse C, Motzo R, Giunta F, Babar MA, Reynolds MP, Kheir AMS, Thorburn PJ, Waha K, Ruane AC, Aggarwal PK, Ahmed M, Balkovič J, Basso B, Biernath C, Bindi M, Cammarano D, Challinor AJ, De Sanctis G, Dumont B, Eyshi Rezaei E, Fereres E, Ferrise R, Garcia-Vila M, Gayler S, Gao Y, Horan H, Hoogenboom G, Izaurralde RC, Jabloun M, Jones CD, Kassie BT, Kersebaum KC, Klein C, Koehler AK, Liu B, Minoli S, Montesino San Martin M, Müller C, Naresh Kumar S, Nendel C, Olesen JE, Palosuo T, Porter JR, Priesack E, Ripoche D, Semenov MA, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Van der Velde M, Wallach D, Wang E, Webber H, Wolf J, Xiao L, Zhang Z, Zhao Z, Zhu Y, Ewert F. 2019. Climate change impact and adaptation for wheat protein. Global Change Biology 25:155–173. doi:10.1111/gcb.14481.
Balaghi R, Tychon B, Eerens H, Jlibene M. 2008. Empirical regression models using NDVI, rainfall and temperature data for the early prediction of wheat grain yields in Morocco. International Journal of Applied Earth Observation and Geoinformation 10:438–452. doi:10.1016/j. jag.2006.12.001.
Basso B, Cammarano D, Carfagna E. 2013. Review of crop yield forecasting methods and early warning systems. In: FAO, ed. The First Meeting of the Scientific Advisory Committee of the Global Strategy to Improve Agricultural and Rural Statistics. Rome: FAO, 18–19.
Bell MA, Fischer RA. 1994. Guide to plant and crop sampling: measurements and observations for agronomic and physiological research in small grain cereals. Mexico: CIMMYT. http://hdl.handle.net/10883/1191.
Bian C, Shi H, Wu S, Zhang K, Wei M, Zhao Y, Sun Y, Zhuang H, Zhang X, Chen S. 2022. Prediction of field-scale wheat yield using machine learning method and multi-spectral UAV data. Remote Sensing 14:1474. doi:10.3390/RS14061474.
Bolton DK, Friedl MA. 2013. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agricultural and Forest Meteorology 173:74–84. doi:10.1016/J.AGRFORMET.2013.01.007.
Boote KJ. 1999. Concepts for calibrating crop growth models. DSSAT Version 3. 179–199.
Bregaglio S, Frasso N, Pagani V, Stella T, Francone C, Cappelli G, Acutis M, Balaghi R, Ouabbou H, Paleari L, Confalonieri R. 2015. New multi-model approach gives good estimations of wheat yield under semi-arid climate in Morocco. Agronomy for Sustainable Development 35:157–167. doi:10.1007/s13593-014-0225-6.
Breiman L. 1996. Bagging predictors. Machine Learning 24:123–140. doi:10.1007/BF00058655.
Breiman L. 2001. Random forests. Machine Learning 45:45–32. doi:10.1 023/A:1010933404324.
Cavalaris C, Megoudi S, Maxouri M, Anatolitis K, Sifakis M, Levizou E, Kyparissis A. 2021. Modeling of durum wheat yield based on sentinel-2 imagery. Agronomy 11:1486. doi:10.3390/AGRONOMY11081486.
Cosnefroy O, Sabatier C. 2011. Estimation de l’importance relative des prédicteurs dans un modèle de régression multiple Intérêt et limites des méthodes récentes. L’Année Psychol 111:253–289. doi:10.3917/ ANPSY.112.0253.
Crane-Droesch A. 2018. Machine learning methods for crop yield prediction and climate change impact assessment in agriculture. Environmental Research Letters 13:114003. doi:10.1088/1748-9326/ AAE159.
Dahan R, Boughlala M, Mrabet R, Laamari A, Balaghi R, Lajouad L. 2012. A review of available knowledge on land degradation on Morocco. Rabat. doi: 10.22004/ag.econ.253831.
de Wit AJW, van Diepen CA. 2007. Crop model data assimilation with the Ensemble Kalman filter for improving regional crop yield forecasts. Agricultural and Forest Meteorology 146:38–56. doi:10.1016/j. agrformet.2007.05.004.
De Wit A, Hoek S, Ballaghib R, El Hairechc T, Dong Q. 2013. Building an operational system for crop monitoring and yield forecasting in Morocco. In: 2013 2nd Int. Conf. Agro-Geoinformatics Inf. Sustain. Agric. Agro-Geoinformatics 2013, 466–469. doi:10.1109/ ARGO-GEOINFORMATICS.2013.6621964.
Droutsas I, Challinor AJ, Deva CR, Wang E. 2022. Integration of machine learning into process-based modelling to improve simulation of complex crop responses. in Silico Plants 4:1–16. doi:10.1093/INSILICOPLANTS/DIAC017.
Estes LD, Bradley BA, Beukes H, Hole DG, Lau M, Oppenheimer MG, Schulze R, Tadross MA, Turner WR. 2013. Comparing mechanistic and empirical model projections of crop suitability and productivity: implications for ecological forecasting. Global Ecology and Biogeography 22:1007–1018. doi:10.1111/GEB.12034.
European Space Agency. 2021. Copernicus Sentinel data: Sentinel-2 images. https://scihub.copernicus.eu/dhus/#/home (accessed 2.19.22a).
European Space Agency. 2021. Copernicus Service information: STEP – Science Toolbox Exploitation Platform. http://step.esa.int/main/toolboxes/snap/ (accessed 2.19.22b).
Farooq M, Bramley H, Palta JA, Siddique KHM. 2011. Heat stress in wheat during reproductive and grain-filling phases. CRC Critical Reviews in Plant Sciences 30:1–17. doi:10.1080/07352689.2011.6 15687.
Fomby TB, Johnson SR, Hill RC. 1984. Multicollinearity advances in economics. Springer Sciences + Business Media LLC.
Fritz S, See L, Bayas JCL, Waldner F, Jacques D, Becker-Reshef I, Whitcraft A, Baruth B, Bonifacio R, Crutchfield J, Rembold F, Rojas O, Schucknecht A, Van der Velde M, Verdin J, Wu B, Yan N, You L, Gilliams S, Mücher S, Tetrault R, Moorthy I, McCallum I. 2019. A comparison of global agricultural monitoring systems and current gaps. Agricultural Systems 168:258–272. doi:10.1016/J.AGSY.2018.05.010.
Gao BC. 1996. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment 58:257–266. doi:10.1016/S0034-4257(96)00067-3.
Gaydon D. 2014. The APSIM model—an overview. In: SAARC Agriculture Centre, ed. The SAARC-Australia project-developing capacity in cropping systems modelling for South Asia. Dhaka: CSIRO, 15–31.
Gommes R, El Hairech T, Rossillon D, Balaghi R. 2009. Impact of climate change on agricultural yields in Morocco. In: FAO, ed. World Bank—Morocco study on the impact of climate change on the agricultural sector. Rome: FAO, 1–105.
Graeff S, Link J, Binder J, Claupei W. 2012. Crop models as decision support systems in crop production. In: P. Sharma. ed. Crop production technologies. Wadoora: InTech. 1–28. doi:10.5772/28976. http://www.intechopen.com/books/crop-production-technologies/ crop-models- as-decision-support-systems-in-crop-production
Han J, Zhang Z, Cao J, Luo Y, Zhang L, Li Z, Zhang J. 2020. Prediction of winter wheat yield based on multi-source data and machine learning in China. Remote Sensing 12:236. doi:10.3390/RS12020236.
Harbouz R, Pellissier J-P, Rolland J-P, Khechimi W. 2019. Rapport de synthèse sur l’agriculture au Maroc. [Rapport de recherche] CIHEAMIAMM. pp.104. hal-02137637v2.
Hasegawa T, Wakatsuki H, Ju H, Vyas S, Nelson GC, Farrell A, Deryng D, Meza F, Makowski D. 2022. A global dataset for the projected impacts of climate change on four major crops. Scientific Data 9:1–11. doi:10.1038/s41597-022-01150-7.
He D, Wang E, Wang J, Robertson MJ. 2017. Data requirement for effective calibration of process-based crop models. Agricultural and Forest Meteorology 234-235:136–148. doi:10.1016/j.agrformet.2016.12.015.
Heil K, Heinemann P, Schmidhalter U. 2018. Modeling the effects of soil variability, topography, and management on the yield of barley. Frontiers in Environmental Science 6:146. doi:10.3389/ FENVS.2018.00146/BIBTEX.
Henao J, Baanan C. 1999. Estimating rates of nutrient depletion in soils of agricultural lands of Africa. Muscle Shoals, AL: International Fertilizer Development Center.
Hothorn T, Bühlmann P, Dudoit S, Molinaro A, Van Der Laan MJ. 2006. Survival ensembles. Biostatistics 7:355–373. doi:10.1093/BIOSTATISTICS/KXJ011.
Huang J, Gómez-Dans JL, Huang H, Ma H, Wu Q, Lewis PE, Liang S, Chen Z, Xue JH, Wu Y, Zhao F, Wang J, Xie X. 2019. Assimilation of remote sensing into crop growth models: current status and perspectives. Agricultural and Forest Meteorology 276-277:107609. doi:10.1016/J.AGRFORMET.2019.06.008.
Hunt J, van Rees H, Hochman Z, Carberry PS, Holzworth D, Dalgliesh N, Brennan LE, Poulton PL, van Rees S, Huth NI, Peake A. 2006. Yield Prophet®: an online crop simulation service. In: Turner N, Acuna T, eds. Proceedings of the Australian Agronomy Conference. CSIRO, Perth.
Hunt ML, Blackburn GA, Carrasco L, Redhead JW, Rowland CS. 2019. High resolution wheat yield mapping using Sentinel-2. Remote Sensing of Environment 233:111410. doi:10.1016/J.RSE.2019.111410.
Jones JW, Antle JM, Basso B, Boote KJ, Conant RT, Foster I, Godfray HCJ, Herrero M, Howitt RE, Janssen S, Keating BA, Munoz-Carpena R, Porter CH, Rosenzweig C, Wheeler TR. 2017. Toward a new generation of agricultural system data, models, and knowledge products: state of agricultural systems science. Agricultural Systems 155:269–288. doi:10.1016/j.agsy.2016.09.021.
Jones JW, Keating BA, Porter CH. 2001. Approaches to modular model development. Agricultural Systems 70:421–443. doi:10.1016/S0308-521X(01)00054-3.
Kasampalis D, Alexandridis T, Deva C, Challinor A, Moshou D, Zalidis G. 2018. Contribution of remote sensing on crop models: a review. Journal of Imaging 4:52. doi:10.3390/jimaging4040052.
Keating B, Carberry P, Hammer G, Probert M, Robertson M, Holzworth D, Huth N, Hargreaves JN, Meinke H, Hochman Z, McLean G, Verburg K, Snow V, Dimes J, Silburn M, Wang E, Brown S, Bristow K, Asseng S, Chapman S, McCown R, Freebairn D, Smith C. 2003. An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy 18:267–288. doi:10.1016/S1161-0301(02)00108-9.
Kuhn M. 2021. Caret: classification and regression training. R Package Version 6.0-88. https://CRAN.R-project.org/package=caret
Launay M, Guerif M. 2005. Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications. Agriculture Ecosystems and Environment 111:321–339. doi:10.1016/j. agee.2005.06.005.
Li Z, Ding L, Xu D. 2022. Exploring the potential role of environmental and multi-source satellite data in crop yield prediction across Northeast China. Science of the Total Environment 815:152880. doi:10.1016/J.SCITOTENV.2021.152880.
Li Z, He J, Xu X, Jin X, Huang W, Clark B, Yang G, Li Z. 2018. Estimating genetic parameters of DSSAT-CERES model with the GLUE method for winter wheat (Triticum aestivum L) production. Computers and Electronics in Agriculture 154:213–221. doi:10.1016/j.compag.2018.09.009.
Lischeid G, Webber H, Sommer M, Nendel C, Ewert F. 2022. Machine learning in crop yield modelling: a powerful tool, but no surrogate for science. Agricultural and Forest Meteorology 312:108698. doi:10.1016/J.AGRFORMET.2021.108698.
LuoL,SunS,XueJ,GaoZ,ZhaoJ,YinY,GaoF,LuanX.2023.Cropyield estimation based on assimilation of crop models and remote sensing data: a systematic evaluation. Agricultural Systems 210:103711. doi:10.1016/j.agsy.2023.103711.
MaestriniB,MimićG,vanOortPAJ,JindoK,BrdarS,vanEvertFK,Athanasiados I. 2022. Mixing process-based and data-driven approaches in yield prediction. European Journal of Agronomy 139:126569. doi:10.1016/J.EJA.2022.126569.
Makowski D, Naud C, Jeuffroy MH, Barbottin A, Monod H. 2006. Global sensitivity analysis for calculating the contribution of genetic parameters to the variance of crop model prediction. Reliability Engineering and System Safety 91:1142–1147. doi:10.1016/j. ress.2005.11.015.
Mamassi A, Marrou H, El Gharous M, Wellens J, Jabbour F-E, Zeroual Y, Hamma A, Tychon B. 2022. Relevance of soil fertility spatial databases for parameterizing APSIM-wheat crop model in Moroccan rainfed areas. Agronomy for Sustainable Development 42:1–16. doi:10.1007/S13593-022-00813-4.
MAPMDREF. 2008. Atlas de l’agriculture marocaine. Rabat. https://www.agriculture.gov.ma/
Marques Ramos AP, Prado Osco L, Elis Garcia Furuya D, Nunes Gonçalves W, Cordeiro Santana D, Pereira Ribeiro Teodoro L, Antonio da Silva Junior C, Fernando Capristo-Silva G, Li J, Henrique Rojo Baio F, Marcato Junior J, Eduardo Teodoro P, Pistori H. 2020. A random forest ranking approach to predict yield in maize with uav-based vegetation spectral indices. Computers and Electronics in Agriculture 178:105791. doi:10.1016/J.COMPAG.2020.105791.
Marszalek M, Körner M, Schmidhalter U. 2022. Prediction of multi-year winter wheat yields at the field level with satellite and climatologicaldata.ComputersandElectronicsinAgriculture194:106777.doi:10.1016/J.COMPAG.2022.106777.
Meroni M, Waldner F, Seguini L, Kerdiles H, Rembold F. 2021. Yield forecasting with machine learning and small data: what gains for grains? Agricultural and Forest Meteorology 308–309:108555. doi:10.1016/J. AGRFORMET.2021.108555.
Mohamed Sallah AH, Tychon B, Piccard I, Gobin A, Van Hoolst R, Djaby B, Wellens J. 2019. Batch-processing of AquaCrop plug-in for rainfed maize using satellite derived Fractional Vegetation Cover data. Agricultural Water Management 217:346–355. doi:10.1016/j. agwat.2019.03.016.
Mohanty M, Probert ME, Reddy KS, Dalal RC, Mishra AK, Subba Rao A, Singh M, Menzies NW. 2012. Simulating soybean-wheat cropping system: APSIM model parameterization and validation. Agriculture Ecosystems and Environment 152:68–78. doi:10.1016/j.agee.2012.02.013.
Oteng-Darko P, Yeboah S, Addy SNT, Amponsah S, Danquah E. 2013. Crop modeling: a tool for agricultural research—A review. Journal of Agricultural Research and Development 2:1–6.
Palm R. 1994. Modèles agrométéorologiques: régression et analyse de la tendance. In: Séminaire Sur Les Méthodes de Prévision de Rendements Agricoles. Villefranche-sur-Mer: Office for Official Publications of the European Communities, 67–76.
Perniola M, Lovelli S, Arcieri M, Amato M. 2015. Sustainability in cereal crop production in mediterranean environments. In: Vastola A (ed), The Sustainability of Agro-Food and Natural Resource Systems in the Mediterranean Basin 15–27. Springer, Cham. doi:10.1007/978-3-319-16357-4_2/FIGURES/4.
Porter JR, Gawith M. 1999. Temperatures and the growth and development of wheat: a review. European Journal of Agronomy 10:23–36. doi:10.1016/S1161-0301(98)00047-1.
Prasad NR, Patel NR, Danodia A, Manjunath KR. 2022. Comparative performance of semi-empirical based remote sensing and crop simulation model for cotton yield prediction. Modeling Earth Systems and Environment 8:1733–1747. doi:10.1007/S40808-021-01180-X/FIGURES/12.
Proctor J, Rigden A, Chan D, Huybers P. 2022. More accurate specification of water supply shows its importance for global crop production. Nature Food 3:753–763. doi:10.1038/s43016-022-00592-x.
Qu M, Guang X, Li J, Liu H, Zhao Y, Huang B. 2022. An integrated yield-based methodology for improving soil nutrient management at a regional scale. Agronomy 12:298. doi:10.3390/AGRONOMY12020298.
Roell YE, Beucher A, Møller PG, Greve MB, Greve MH. 2020. Comparing a random forest based prediction of winter wheat yield to historical yield potential. Agronomy 10:395. doi:10.3390/AGRONOMY10030395.
Roy RN, Misra RV, Lesschen JP, Smaling EM. 2003. Assessment of soil nutrient balance: approaches and methodologies. Rome: FAO.
Savin R, Cossani CM, Dahan R, Ayad JY, Albrizio R, Todorovic M, Karrou M, Slafer GA. 2022. Intensifying cereal management in dry-land Mediterranean agriculture: rainfed wheat and barley responses to nitrogen fertilisation. European Journal of Agronomy 137:126518. doi:10.1016/J.EJA.2022.126518.
Schjønning P, Jensen JL, Bruun S, Jensen LS, Christensen BT, Munkholm LJ, Oelofse M, Baby S, Knudsen L. 2018. The role of soil organic matter for maintaining crop yields: evidence for a renewed conceptual basis. Advances in Agronomy 150:35–79. doi:10.1016/ BS.AGRON.2018.03.001.
Shahhosseini M, Hu G, Huber I, Archontoulis SV. 2021. Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt. Scientific Reports 11:1–15. doi:10.1038/s41598-020-80820-1.
Shroyer JP, Ryan J, Monem MA, El-Mourid M. 1990. Production of fall-planted cereals in Morocco and technology for its improvement. Journal of Agronomic Education 19:32–40.
Sparks A. 2018. nasapower: a NASA POWER global meteorology, surface solar energy and climatology data client for R. Journal of Open Source Software 3:1035. doi:10.21105/joss.01035.
Strobl C, Boulesteix AL, Kneib T, Augustin T, Zeileis A. 2008. Conditional variable importance for random forests. BMC Bioinformatics 9:1–11. doi:10.1186/1471-2105-9-307/FIGURES/4.
Strobl C, Boulesteix AL, Zeileis A, Hothorn T. 2007. Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinformatics 8:1–21. doi:10.1186/1471-2105-8-25/ FIGURES/11.
Strobl C, Malley J, Tutz G. 2009. An introduction to recursive partitioning: rationale, application and characteristics of classification and regression trees, bagging and random forests. Psychological Methods 14:323–348. doi:10.1037/A0016973.
Sultan B, Bella-Medjo M, Berg A, Quirion P, Janicot S. 2010. Multi-scales and multi-sites analyses of the role of rainfall in cotton yields in West Africa. International Journal of Climatology 30:n/a–n/a. doi:10.1002/JOC.1872
Thompson LM. 1969. Weather and technology in the production of corn in the U S corn belt1. Agronomy Journal 61:453–456. doi:10.2134/ AGRONJ1969.00021962006100030037X.
Varella H, Guérif M, Buis S. 2010. Global sensitivity analysis measures the quality of parameter estimation: the case of soil parameters and a crop model. Environmental Modelling and Software 25:310–319. doi:10.1016/j.envsoft.2009.09.012.
Wala AA, Jauad E. kharraz, Gül Ö. 2019. Morocco water report. https://water.fanack.com/morocco/
WangE,BellM,LuoZ,MoodyP,ProbertME.2014.Modellingcropresponse to phosphorus inputs and phosphorus use efficiency in a crop rotation. FieldCropsResearch155:120–132.doi:10.1016/j.fcr.2013.09.015.
Wani SP, Rockstrom J, Oweis T. 2009. Rainfed agriculture: unlocking the potential. Wallingford: CABI; Patancheru: International Crops Research Institute for the Semi-Arid Tropics (ICRISAT); Colombo: International Water Management Institute (IWMI).
Xiao X, Boles S, Frolking S, Li C, Babu JY, Salas W, Moore B. 2006. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sensing of Environment 100:95–113. doi:10.1016/J.RSE.2005.10.004.
Zadoks JC, Chang TT, Konzak CF. 1974. A decimal code for the growth stages of cereals. Weed Research 14:415–421. doi:10.1111/j.1365-3180.1974.tb01084.x.
Zhang N, Zhou X, Kang M, Hu B-G, Heuvelink E, Marcelis LFM, Buckley T. 2023. Machine learning versus crop growth models: an ally, not a rival. AoB Plants 15:1–7. doi:10.1093/AOBPLA/PLAC061.
Zhang T, Chandler WS, Hoell JM, Westberg D, Whitlock CH, Stack-house PW. 2008. A global perspective on renewable energy resources: Nasa’s prediction of worldwide energy resources (power) project. In: Proceedings of ISES World Congress 2007 (Vol. I – Vol. V). Springer Berlin Heidelberg, Berlin, Heidelberg, 2636–2640. doi:10.1007/978-3-540-75997-3_532
Zhao G, Bryan BA, Song X. 2014. Sensitivity and uncertainty analysis of the APSIM-wheat model: interactions between cultivar, environmental, and management parameters. Ecological Modelling 279:1–11. doi:10.1016/j.ecolmodel.2014.02.003.
Zhao Y, Potgieter AB, Zhang M, Wu B, Hammer GL. 2020. Predicting wheat yield at the field scale by combining high-resolution sentinel-2 satellite imagery and crop modelling. Remote Sensing 12:1024. doi:10.3390/rs12061024.