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Abstract 

In the context of climate change, in-season and longer-term yield predictions are needed 

to anticipate local and regional food crises and propose adaptations to farmers’ practices. 

Mechanistic models and machine learning are two modelling options to consider in this 

perspective. In this study, regression (MR) and Random Forest (RF) models were calibrated 

for wheat yield prediction in Morocco, using data collected from 125 farmers’ wheat fields. 

Additionally , MR and RF models were calibrated both with or without remotely-sensed leaf 

area index (LAI), while considering all farmers’ fields, or specifically to agroecological 

zoning in Morocco. The same farmers’ fields were simulated using a mechanistic model 

(APSIM-wheat). We compared the predictive performances of the empirical models and 

APSIM-wheat. Results showed that both MR and RF showed rather good predictive quality 

(NRMSEs below 35%), but were always outperformed by APSIM model.  Both RF and MR 

selected remotely-sensed LAI at heading, climate variables (maximal temperatures at 

emergence and tillering), and fertilization practices (amount of nitrogen applied at heading) 

as major yield predictors. Integration of remotely-sensed LAI in the calibration process 

reduced NRMSE of 4.5% and 1.8 % on average for MR and RF models respectively.  

Calibration of region specific models did not significantly improve the predictive. These 

findings lead to the conclusion that mechanistic models are better at capturing the impacts of 

in-season climate variability and would be preferred to support short term tactical 

adjustments to farmers’ practices, while machine learning models are easier to use in the 

perspective of mid-term regional prediction. 

Keywords: yield prediction, empirical model, machine learning, APSIM-wheat, model 

comparison, Morocco. 
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1. Introduction 

Ongoing climate change has reinforced the need to deliver crop yield predictions over 

short or longer time horizons (Crane-Droesch, 2018; Hasegawa et al., 2022). As extreme 

climatic events are more frequent and unpredictable (Savin et al., 2022), farmers need to take 

tactical decisions in-season to adapt their practices according to the expected production 

levels and production costs. Over several years, cropping practices may also require 

adaptation to cope with the local evolution of mean temperatures and rainfall distribution. In 

the rainfed areas of Morocco, farmers are particularly vulnerable to climate change. 

Recurrent droughts, aggravated by limited access to fertilizer, are responsible for highly 

variable crop yields and large yield gaps (Bregaglio et al., 2015; Henao and Baanan, 1999; 

Roy et al., 2003). Rainfed cereal production represents 80% of the total cereal production of 

the country (Shroyer et al., 1990), putting the food and economic balances of the country at 

risk. 

Model-assisted decision-making in agriculture can reduce farmers’ vulnerability to 

climatic risks and support adaptation to fluctuations in market inputs, the allocation of 

subsidies, and the recommendation of efficient and sustainable management practices for 

farmers (Asseng et al., 2019; De Wit et al., 2013; Kasampalis et al., 2018; Wang et al., 2014). 

National or regional crop yield prediction systems have been developed to support farmers 

and other stakeholders of the food chain, using numerical models. Two types of modeling 

approaches have been reported in the literature on yield prediction: i) Process-based 

approaches (i.e., me65)chanistic models) that represent the processes involved in crop 

development, growth, resource allocation, and the interactions between these through 

equations (Basso et al., 2013; Graeff et al., 2012; Jones et al., 2017). For example, the Global 

Yield Gap Atlas maps potential yield for major food crops in a large number of countries 

across the world, using processed based crop model simulations (www.yieldgap.org). ii) 

Empirical approaches that relate grain yield to agronomic and environmental factors (i.e., 

climate, soil, crop management information, etc.) including simple statistical relations (e.g., 

multiple regression analysis) (Palm, 1994; Thompson, 1969) or complex statistical algorithms 

(e.g., machine learning algorithms) (Droutsas et al., 2022; Marques Ramos et al., 2020; Son 

et al., 2022).  For example, in Morocco, the national prediction system CGMS-MAROC, 

coordinated by the National Institute of Agriculture (INRA) produces maps of expected 

wheat production across Morrocco, every year, using empirical models (http://www.cgms-
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maroc.ma/). It is worthy to note that in this second category, the degree of empiricism varies 

between model based statistical approach in which predictors or distributions can be set based 

on biological assumptions to purely algorithmic. 

Crop simulation models are valuable tools to predict yield in variable soil and climatic 

contexts and to support the adaptation of cropping practices. They can provide better 

understanding of the interactions between the major processes of the soil-plant-climate 

continuum and its global functioning at a daily time step. However, they often require a large 

number of input parameters (Cavalaris et al., 2021), which makes their deployment at large 

geographic scales over a variety on agroecosystems costly due to the logistics and financial 

resources needed to acquire parameter values (Makowski et al., 2006; Varella et al., 2010).  

Conversely, empirical models estimate yield at a cropping season time step and can be 

easily used in research studies that target broad geographic ranges. The statistical approach 

provides a simple qualitative understanding of the links between grain yield measurements 

and environmental variables through regression and correlation analyses (Oteng-Darko et al., 

2013), mainly represented in past studies by climate variables and remotely-sensed vegetation 

indices or biophysical variables (e.g., leaf area index - LAI, normalized difference vegetation 

index - NDVI, etc.) (Andarzian et al., 2008; Bolton and Friedl, 2013; Son et al., 2022).  

High throughput data gathering methods employing remote sensing and satellite images 

have reshaped yield modeling over the past 10 years and diminished the divide between 

empirical and crop simulation models. The number of spectral indicators linked to crop state 

that may be integrated into empirical models has significantly increased as a result of recent 

technology advancements (Launay and Guerif, 2005; de Wit and van Diepen, 2007; Huang et 

al., 2019). Likewise, the integration of remotely obtained vegetation indexes into crop 

modeling pipelines has made it possible to reduce the degree of uncertainty in predictions of 

national yields (Luo et al., 2023). 

Overall, empirical models are simpler to use, with a reduced number of parameters and 

possibly shorter calculation time requirements compared to crop models (Sultan et al., 2010). 

However, agronomic recommendations can be difficult to infer from these types of models 

that bypass the relations between climate, practices, and soil on one hand, and crop 

functioning on the other (Heil et al., 2018; Jones et al., 2001). This difficulty is increased by 

the possibility of identifying different sets of predictors for yield with equivalent performance 

using machine learning approaches. This is particularly the case with multivariate regression 
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models, and results from the collinearity among variables used in the model (Lischeid et al., 

2022). Additionally, the vast majority of simple or complex statistical models used 

worldwide for yield prediction are non-spatial (Qu et al., 2022). They provide unique sets of 

selected environmental predictors of yield for an entire region; whilst – from an agronomic 

perspective – climatic, pedological, and management determinants of yield are known to vary 

across these large geographic regions. Simple customization of empirical models could 

outperform this limitation if zoning of the region of interest into sub-regions with 

homogenous climate conditions, soil status, or practices exists, so that different sets of 

predictors could be independently selected for each sub-region. In Morocco, zoning of the 

wheat production area was delimitated by the FAO, within the framework of Strategy for the 

Conservation and Restoration of Agricultural Land (ISCRAL), which divides the Moroccan 

rainfed wheat production areas into four main climatic areas mainly defined by annual 

rainfall (i.e., favorable, unfavorable, intermediate, and mountain rainfed areas) (Akka, 2006; 

Harbouz et al., 2019; MAPMDREF, 2008). 

The objective of the present study is to compare the predictive capacity of empirical 

models (multiple regression (MR) and random forests (RF) models) and a process-based 

model (APSIM-wheat model) for wheat yield across the rainfed areas of Morocco and 

discuss their suitability for different modeling objectives. The precision of the different 

prediction methods and sets of selected predictors will be compared, and the effect of recent 

advances in remote sensing technologies on the prediction gap between the empirical and 

process-based approaches will be assessed by integrating (1) the effect of incorporating a 

satellite-based vegetation index (LAI) in MR and RF models, (2) the effect of stratifying the 

dataset into different climatic sub-regions of Morocco for calibration of sub-region-specific 

empirical models. The performances of both improved and original empirical models as well 

as the mechanistic model will be discussed in the light of the time horizon targeted for 

prediction and support to farmers’ decision-making. 

2. Materials and Methods 

2.1. Study area 

Ble 3 

Morocco covers about 710,850 km
2
, and most of the country (93%) is characterized by an 

arid to semi-arid climate (Dahan et al., 2012). The agricultural production zones in Morocco 

are located between the mountains (Rif and Atlas), the Atlantic Ocean, and the Mediterranean 
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Sea. In the present study, 125 farmers’ wheat fields were selected randomly across the main 

Moroccan rainfed areas based on the FAO’s ISCRAL zoning (i.e., favorable (with 

precipitation >400 mm), intermediate (300–400 mm), and unfavorable rainfed areas 

(<300 mm) (Figure 1), and monitored during three cropping seasons (from 2018 to 2021). 

The selected farmers’ fields represent a diversity of conditions (i.e., soil, management 

practices, and climatic conditions) (Figure 1) under the Moroccan rainfed areas, to ensure 

robust calibration and evaluation processes of both empirical and mechanistic models. The 

datasets were assembled from fieldwork conducted in the framework of the ―SoilPhorLife‖ 

project and ―Al Moutmir‖ program led by the Office Chérifien des Phosphates (OCP group). 

2.2. Datasets 

 

2.2.1 Phenological stages observations and grain yield measurement 

During the three growing seasons, the main wheat phenological stages were monitored in 

the farmers’ wheat fields based on Zadoks scale (Zadoks et al., 1974). To achieve an accurate 

scoring of each field as a whole, Zadoks scale scores were identified at 10 locations in each 

field, selected along a zigzag pattern. 

Actual grain yield (Table 1) was measured at harvest in each farmer’s field by harvesting 

five samples of 1 m² selected randomly across the field based on Bell and Fisher’s 

methodology (Bell and Fischer, 1994). 

 

2.2.2 Meteorological data 

 

Daily maximum and minimum temperatures and daily rainfall were extracted from three 

sources. Weather station-based data were provided by the Office Régional de Mise en Valeur 

Agricole (ORMVA) and from a public website (www.tutiempo.net) (Tutiempo Network, S.L.) 

that offers data from airport weather stations. Since daily  solar radiation was not available at 

most of these weather stations,  data were completed with daily global radiation extracted 

from the satellite-based platform of NASA’s Prediction of Worldwide Energy Resources 

(POWER) Project (https://power.larc.nasa.gov/data-access-viewer/) with a  resolution of 

0.5°×0.5° (i.e. about 50×50 km) (Sparks, 2018; Zhang et al., 2008). For each field, the closest 

weather station was chosen to represent the field’s meteorological conditions. Using 15 
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different weather stations allowed to keep the distance between a field and the corresponding 

weather station below 50 km.  

For each field, climatic variable variables were calculated by aggregating daily weather 

data over the main develop phase of wheat as recorded in the field (see section 2.2.1):  (1) 

emergence (Z0 to Z20), (2) tillering (Z20 to Z30), (3) elongation (Z30 to Z50), (4) heading 

and anthesis, (Z50 to Z70), and (5) grain filling and maturity (Z70 to Z90). Cumulative 

rainfall (R1 to R5), means of maximum daily temperatures (Tmax1 to Tmax5), minimum 

daily temperatures (Tmin1 to Tmin5) and the cumulative growing degree days (GDD1 to 

GDD5) were calculated for each development phase and each field (Table 2). Moreover, the 

total cumulative precipitation (Rtot), the means of maximum (Tmax) and minimum (Tmin) 

daily temperature and the total cumulative growing degree days (GDDtot) were calculated for 

the entire crop cycle (i.e., from sowing date to harvesting date) (Table 2). The purpose of 

calculating these auxiliary variables was to capture yield potential as determined by wheat 

variety and local climate through GDD variables, as well as the effect of the main abiotic 

stresses (water stress, heat stress, and cold stress) for each development phase estimated 

through Tmin1 to Tmin5, Tmax1 to Tmax5, and R1 to R5 variables. Cumulative incident 

radiation available during each phenological stage was not considered due the uncertainty of 

this climatic variable (estimated from a satellite-based meteorological dataset) and the 

presence of a high collinearity effect between global radiation and maximum temperatures. 

2.2.3 Soil data 

Soil samples were collected in each field before the sowing date, at two depths (maximum 

depth depending on soil development, and in most cases less than 60 cm). Variables related 

to soil chemical properties (available-P (P), exchangeable-K (K), organic matter (OM), and 

pH) were determined standard procedures. Data were averaged over the two soil layers, using 

soil layer thickness as weights) for each field and each variable (Table 2). 

2.2.4 Crop management data 

The main crop management input variables, used during the calibration of empirical 

models and to parameterize the APSIM-wheat crop model, describe farmers’ fertilization 

practices as recommended by experts. Crop management variables include the wheat cultivar 

and sowing date, amount of nitrogen-, phosphorus-, and potassium-based deep fertilizers 

applied at sowing date (respectively, N0, P2O5, and K2O), and the amount of nitrogen top-

dressing fertilizer applied at tillering stage (N1) and at heading stage (N2). Total applied 
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nitrogen (Ntot = N0+N1+N2) and the total top-dressing nitrogen (Nd = N1+N2) were 

calculated and also used to calibrate empirical models. 

2.2.5 Wheat growth satellite-based parameters 

Sentinel-2 satellite images covering the monitored farmers’ wheat fields during the three 

crop seasons (from 2018 to 2021) were downloaded from the Copernicus platform 

(https://scihub.copernicus.eu/dhus/) (European Space Agency). Sentinel-2 optical imagery 

provides a series of products with high temporal (5 days), spatial (10 to 60 m), and spectral 

(13 bands) resolution adapted for field-scale monitoring (Mohamed Sallah et al., 2019; Zhao 

et al., 2020). 

Due to the large number of monitored fields, we extracted satellite images for two 

specific dates that represent determinant phenological stages, framing the period of maximum 

vegetative growth: at Z30 (end of tillering/start of elongation) and Z50 (end of 

elongation/start of heading). Only images with cloud cover lower or equal to 15% were 

considered. Due to the 5-day time resolution of Sentinel, the temporal uncertainties for 

variables extracted from satellite images were equal to 3 days. Unfavorable cloud cover 

(>15%) can occasionally increase this uncertainty, forcing us to skip overcast images and use 

images with low cloud cast on close dates. The downloaded images were preprocessed using 

the Sentinel Application Platform (SNAP) software (version 8.0.0) 

(https://step.esa.int/main/toolboxes/snap/) (European Space Agency), freely provided by 

Sentinel. Images underwent sequential pre-processing steps: resampling and creating subsets. 

Then, a SNAP algorithm was applied to compute and extract a leaf area index (LAI) raster 

map from each image. LAI was calculated based on spectral bands with a spatial resolution 

ranging between 10 to 20 meters. Finally, field polygons were delimited, excluding borders, 

and LAI was averaged over the pixel of each field polygon. 

2.3. Calibration of empirical models 

 

2.3.1. Modeling strategies for calibration of MR and RF models 

Data collected in the field and derived from the soil and weather dataset for each field 

were compiled into a database (Table 1).  

To test the possibility of integrating the spatial and temporal variation of the main 

determinants of wheat yield, two different modeling strategies were tested to split the dataset 

into a calibration and an evaluation subset: 
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 Extraction of one generic model covering the whole range of monitored farmers’ 

fields across the rainfed wheat-growing area in Morocco (S1). The generic model was 

obtained by stratifying the available field data set: crop seasons (2019, 2020, and 

2021) represent the strata, and 70% of the data from each of the three strata was used 

to calibrate models while 30% was used to evaluate the models. 

 Extraction of three region-specific models for each of the rainfed agroclimatic areas 

(S2) (i.e., favorable, intermediate, and unfavorable). Region-specific (or agroclimate-

specific) models were extracted using 70% of the observations while 30% of the 

dataset was used to evaluate those specific models. 

To ensure the robustness of the comparisons between MR and RF models, both types of 

models were built on the same calibration and evaluation datasets described by the two 

strategies (S1 and S2). Modeling strategy (S1) was considered as the baseline for empirical 

models, compared to (S2) and models incorporating satellite-based LAI variables 

(Section 2.3.4). 

 

2.3.2. Multiple regression models 

Regression models with one predicted variable and more than one independent predictive 

variable are known as multivariate linear regression analysis (MR). The corresponding model 

is formulated as follows:  

                            

where Y is the predicted variable, Xi represents n distinct independent variables (predictors), 

and bi is the estimated regression coefficients. 

Simple stepwise linear regression analyses were conducted using IBM-SPSS Statistics 

software (v 25.0) (SPSS Inc.) to examine whether independent quantitative variables 

(Table 1) were successful in predicting the dependent variable (wheat yield) and to assess the 

quality of contributions of each predictive variable. Assumptions of linearity, normal 

distribution, and multicollinearity of the predictor variables were verified. The model that 

minimized the minimum standard in the absence of multicollinearity was selected by the 

stepwise algorithm as the most appropriate to predict yield. The variance inflation factor 

―VIF‖ was calculated to interpret the multicollinearity, and VIF values under 2.5 were 

considered to represent an acceptable level of collinearity based on the literature (Fomby et 
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al., 1984). Finally, relative standardized estimators (  ̂) were used to evaluate the 

contributions of individual predictors to the variation of yield. Relative standardized 

estimators of effects in the MR models were obtained by calculating the ratio between 

estimators for each predictor and the maximum of all estimators (  ̂) in the selected model. 

Overall, the use of β values to estimate the predictors’ relative importance is conditioned by 

the hypothesis of absence of multicollinearity (Cosnefroy and Sabatier, 2011), which was our 

second rule of MR model selection during the calibration process. 

2.3.3. Random forests model 

A set of random forests models was designed in R, version 4.1.2 (https://cran.r-

project.org/), using the same variables as the MR model. Similarly, two modeling strategies 

were tested (see Section 2.3.3). The ―caret‖ package, version 6.0-90 (Kuhn, 2022) was used 

throughout the procedure. 

In a random forests model, a set of trees – in our case 500 – is built in a training phase 

and the outcome of the model is obtained by averaging the output of all the trees (Breiman, 

2001). This operation was realized on the calibration samples described in section 2.3.1. The 

principle behind the random forests procedure is to increase the performance of the model by 

combining the outputs of a large number of different, average-performing models (Breiman, 

1996). The variety in the models (trees) is obtained through two elements containing a 

random component. First, each tree is built on a randomly selected fraction (two-thirds) of the 

training dataset (calibration sample) by bootstrap aggregating (bagging) while the remaining 

part of the dataset (out-of-bag sample) is used to assess the prediction error of the tree 

(Breiman, 2001). Metrics describing the performance of the model in the training phase are 

reported here as ―calibration results‖. A second random effect is introduced at each node 

when the best split is determined among the variables. In the case of the random forests 

algorithm, only a randomly-selected sample of the independent variables is used at each 

node. In the models, the number of variables, controlled by the parameter ―mtry‖, was set as 

equal to the square root of the number of independent variables (Strobl et al., 2009), rounded 

to the nearest integer, in our case 6. 

Random forests models feature the computation of a variable called permutation feature 

importance, a metric used to evaluate the impact of a variable on the model’s performance. 

Permutation importance is based on the principle that if a variable is not important in the 

model, randomly permutating its values will not affect the model’s performance, while it will 

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diad020/7390631 by guest on 12 N

ovem
ber 2023



Acc
ep

ted
 M

an
us

cri
pt

 

 

if the variable is important. The metric therefore represents the difference in model accuracy 

before and after permutation and grows larger as variables are more important (Breiman, 

2001). In this study, the ―cforest‖ method, from the R package party version 1.3-9 (Hothorn 

et al., 2006; Strobl et al., 2008, 2007) was used. This algorithm was designed to improve the 

estimation of importance in the presence of correlated predictors (Hothorn et al., 2006; Strobl 

et al., 2008, 2007). Finally, the performance of the final model (i.e., the average of the 500 

trees) was assessed using the evaluation samples described in section 2.3.1 and by computing 

the metrics defined in section 2.5. 

2.3.4. Integration of satellite-based wheat LAI dataset into empirical models 

To assess the impact of integrating the satellite-based wheat LAI on the statistical 

models’ structure (choice and weight of the selected predictors) and performance for grain 

yield estimation, the calibration and evaluation of both MR and RF models was repeated 

including (with) or excluding (without) satellite-based LAI determinations at Z30 (LAI-Z30) 

and at Z50 (LAI-Z50) as input variables, in addition to variables related to climate, soil, and 

fertilizing practices. The comparison of the two approaches allowed us to quantify the degree 

of improvement in the models’ potential for yield prediction through the incorporation of 

satellite-based information. Satellite-based LAI was preferred to NDVI or other remote 

sensing vegetation indices based on previous unpublished commercial exploration work 

conducted for an insurance company in Morocco. This choice was also supported by Abi 

Saab et al. (2019) who compared, under Mediterranean conditions, the correlation between 

winter wheat biomass as measured in the field and five remotely sensed vegetation indexes 

derived from Sentinel 2. They found that LAI was notably more correlated to biomass 

compared to NDVI. 

2.4. Mechanistic model: APSIM-wheat 

APSIM ―Agricultural Production Systems Simulator‖ (Keating et al., 2003) is a crop 

growth model that integrates, at a daily time step, the effect of soil, climate, crop cultivar, and 

crop management on interconnected processes (development, growth, resource allocation, 

and effect of abiotic stresses) involved in the elaboration of final yield (Ahmed et al., 2016; 

Keating et al., 2003). It has been employed to simulate a wide range of crops with a focus on 

addressing global challenges such as climate change and food and energy security, as it 

expresses the response of crops to meteorological, soil, and biological factors (He et al., 

2017; Mohanty et al., 2012; Zhao et al., 2014). Moreover, it has been widely used in ex-ante 
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studies to explore the effect of crop management strategies such as fertilization, irrigation, 

weed management and control, land planning, or crop rotation. The detailed development 

history of APSIM was reported by Gaydon (2014). 

Mamassi et al. (2012) previously conducted calibration and evaluation of the APISM-

wheat model in the Moroccan context, using the same dataset as in the present study. The 

same parameterization procedure was applied in the present study: plant parameters and soil 

parameters were inferred from on-site measurement for each of the 125 farmers’ fields that 

were simulated, and complemented by data from the literature, and open access data bases. 

Plant parameters were estimated separately for the five cultivars planted in the whole sample 

of farmer fields then calibrated according to a three step procedure: i) exploring influential 

and non-influential crop cultivars parameters to identify the parameters that required 

calibration, ii) using an Australian cultivar (also cultivated in Mediterranean conditionsto set 

default values for unknown plant coefficients, iii) using the trial-and-errors simplified 

approach to adjust the plant parameters values. Calibration process was done by adjusting 

successively crop phenology, leaf area development and yield, as per Boote’s systematic 

approach (Boote, 1999; Li et al., 2018) , and iv). Daily climate data (temperatures and 

precipitations) originated from the closest weather station of each field with a maximum 

distance of 50 km between the field and the weather station. Daily global radiation was 

extracted from NASA's Prediction Of Worldwide Energy Resources (NASA’s POWER 

project) (https://power.larc.nasa.gov/data-access-viewer/). The detailed procedure used for 

APSIM-wheat model calibration and evaluation were reported in Mamassi et al. (2022).  

2.5. Evaluation metrics 

Statistical metrics were computed to evaluate the uncertainty of both empirical (RF and 

MR, generic or region-specific) and mechanistic (APSIM-wheat) models after calibration and 

validation phases: the root mean square error (RMSE) and the normalized root mean square 

error (NRMSE) as indicators of model precision, as well as the coefficient of determination 

(R
2
) as an indicator of accuracy as per Eq. 1, 2, and 3 respectively. 

RMSE =√
 

 
∑ [   

    
]
  

   
      (1) 
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NRMSE = 

√
 

 
∑ [   

    
]

 

   
 

 ̅  

        (2) 

R
2
 =   

∑ [    
   ̂   

  ̂ ]
 

 
   

∑ [    
  ̅̅ ̅̅̅]

 
 
   

     (3) 

where    
 is the measured values,    

 is the simulated values,  ̅  is the mean of the 

observed value, n is the number of observations (i.e., fields), and  ̂ and  ̂ are the estimators 

of the simple linear regression between models simulated values and observed or measured 

values in real field. 

RMSE and NRMSE were calculated in R (R Core Team, 2020), while R² of MR models 

were obtained using IBM-SPSS Statistics software (v 25.0) (SPSS Inc.). For evaluating the 

benefit of incorporating satellite-based data as an input in MR and RF models, RMSE, 

NRMSE, and R
2
, were computed for each case. 

3. Results 

 

3.1. Comparison between empirical and mechanistic models 

The indicators of predictive capacity of the calibrated and evaluated APSIM-wheat model 

for wheat yield in Moroccan rainfed areas are depicted in Figure 2; further details are 

available in Mamassi et al. (2022). The overall comparison between the empirical and 

mechanistic models showed that APSIM-wheat outperformed the baseline empirical models 

(S1, i.e. RF and MR generic models that were calibrated over the whole rainfed wheat-

growing region without LAI variables), and the region specific models in favorable areas (S2-

Fav). However, in the intermediate and unfavorable rainfed areas of Morocco, the best 

predictive performances were achieved by region-specific MR models when integrating the 

satellite-based variables (i.e., S2-with-Int/Unfav), with RMSEs equal to 0.47 and 0.17 t.ha
−1

, 

respectively. 
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3.2. Structure and predictive quality of generic empirical models (S1) without LAI 

variables (baseline models). 

 ―Baseline models‖ (S1) refers to RF and MR generic models that were calibrated over 

the whole rainfed wheat-growing region in Morocco, and including only variables measured 

on the ground (without LAI variables) as possible predictors (Figures 2b and 3b). Quality 

metrics calculated on the calibration dataset showed good to acceptable predictive quality for 

both MR and RF baseline models. The lowest NRMSE value was obtained for the MR model 

(NRMSE = 24.9%). High R
2
 values generally exceeding 0.7 (Figure 2b) were obtained for 

both MR and RF models, indicating good model accuracy.  

After the model calibration process, the validation of models using independent datasets 

aimed to verify their potential for predicting wheat yield in Moroccan rainfed areas 

(Figure 3). RF and MR baseline models showed almost identical wheat yield estimation 

performances with RMSEs ranging between 0.8 and 0.9 t.ha
−1

 (Figure 3b) corresponding to 

NRMSE below 35%, while R
2
 exceeded 0.8 in both cases. The values of RMSE, NRMSE, 

and R
2
 obtained in the model evaluation step confirmed that both MR and RF calibrated 

baseline models had rather good predictive capacities for yield across the rainfed wheat 

production area in Morocco (Figure 2b). 

Analysis of the models’ structure (Figure 4b and supplemental material S2) indicates that 

the RF and MR calibration process selected the same predictors, and the best predictor 

variables for wheat yield, by decreasing order of importance, were: i) nitrogen fertilization, 

represented mainly by (Ntot) and (Nd) and ii) meteorological variables, mainly maximal 

temperature variables (Tmax1, Tmax2, and Tmax4) and cumulative rainfall variables (Rtot 

and R5).  

Among the soil fertility and fertilization practice-related variables, only soil organic 

matter (OM) and soil pH (pH) were selected as predictors in models, with a secondary 

relative importance (Figure 4). Similarly, these variables were among those with the lowest 

relative and absolute importance in the RF baseline model (Supplemental Material – Table 

S1). Moreover, bivariate correlations between yield and predictive variables confirmed the 

weak contribution of K2O and to a lesser extent of P2O5 to the explanation of yield variations 

(Suplemental material S3).  
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3.3.Effect of calibrating separate region-specific (or agroclimate-specific) models 

Separately calibrating region-specific models for each agroclimatic zone (S2) did not 

significantly improve models’ predictive power according to R
2
, RMSE, and NRMSE values 

as calculated after calibration (Figure 2 and 3). Region-specific models, obtained with the 

MR algorithm with or without satellite-based variables had a better predictive quality than RF 

region-specific models, overall. Moreover, the RF algorithm failed to extract a model for the 

unfavorable rainfed areas (S2-Unfav). This was due to the limited number of fields in this 

region (9 fields only), which was inferior to the minimum number of observations needed by 

the algorithm to perform a split (parameter ―minsplit‖ with a default value of 20). Although 

the algorithm allows setting one’s own value for the parameter ―minsplit‖, we decided not to 

alter the default value as designing an RF model based on such a limited sample would 

seriously limit its interpretability. As a result, the best fit proposed by the algorithm in this 

case was a constant value equal to the average yield (which prevented the computation of R2 

and variable importance). 

During the evaluation phase (Figure 2), nearly identical model predictive performances 

were obtained when applying the RF method for the two sampling strategies (S1 and S2), 

with NRMSE ranging between 26% and 34%, and R
2
 exceeding 0.8 (except for the S2-Unfav 

model that could not be calibrated with the RF approach). Conversely to what was observed 

after calibration, region-specific MR models outperformed the baseline models’ (S1) 

precision in the case of favorable and intermediate rainfed areas (S2-Fav/Int), with NRMSE 

values ranging between 18% and 29% against NRMSE above 30% for (S1) models. R
2
 

values remained above 0.7 for both MR and RF agroclimate-specific models (S2), except for 

the failure of the RF model in the unfavorable zone. 

4.  Effect of integrating satellite-based data on model predictive quality 

Calibration of generic and region-specific models with the MR and RF approaches was 

repeated when integrating LAI-Z30 and LAI-Z50 among the possible predictors of yield. 

Using remotely-sensed variables allowed us to minimize the NRMSE of models calculated on 

the evaluation dataset by 4.9% on average for MR models and 1.8% for RF models 

(Figure 2a). LAI-Z50 was selected as the most influential predictor variable for yield in most 

of RF and MR models (generic or region specific). On the contrary,  LAI-Z30 parameter was 

not selected as a major predictor for any type of model (Figure 3a and supplemental material 

S3). The inclusion of LAI-Z50 in yield RF models mainly resulted in changing the order of 
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importance of predictors: maximum temperatures, total cumulated rainfall and N fertilization 

remained the main predictors together with LAI_Z50. The inclusion of LAI-Z50 in MR 

model’s was more disruptive of their structure, especially for region specific models: 

Incorporation of  LAI-Z50 in MR models was compensated by the exclusion of soil fertility 

variables (OM, pH) and the reduction of the number of variables derived from maximum 

temperatures while cumulated rainfall in different phases appeared amongst the main 

predictors (Figure 3). 

5. Discussion 

4.1. Main environmental determinants of wheat yield in rainfed areas of Morocco. 

The MR and RF models were fairly consistent in selecting climate, soil, and practice-related 

predictors for yield, even when creating models specific to different regions or agroclimates. 

Both generic models obtained using the S1 strategy and models specific to intermediate or 

unfavorable areas identified metrics derived from local rainfall and maximum temperatures 

as the primary determinant predictors of yield. This finding aligns with the understanding that 

water is the main limiting factor for cereal production in rainfed agricultural areas of 

Mediterranean countries, especially in regions where cumulative annual rainfall peaks at 400 

mm (Perniola et al., 2015; Wani et al., 2009). 

The significance of maximum temperature in predicting final yield can be interpreted through 

two pathways. Firstly, high temperatures can indicate the occurrence and severity of heat 

stress, which decreases yield. However, maximum temperature (Tmax) is also correlated with 

mean daily temperatures (Tmean) and daily incoming radiation, indicating its role in 

determining the duration of the crop cycle and the amount of radiation available to the crop. 

Due to these contrasting relationships between Tmax and final yield, its role as a primary 

predictor in RF and MR models is not immediately intuitive. 

The MR and RF models also identified specific periods in the crop cycle when rainfall and 

maximum daily temperatures have a greater impact on final yield. Tmax2 (tillering phase) 

and Tmax4 (heading to flowering phase) were the temperature-related metrics most 

frequently selected as predictors in both types of models. These two metrics were consistently 

chosen in every RF model. Tmax1 (emergence to tillering) and Tmax3 (tillering to booting) 

were occasionally selected as secondary predictors in MR models. Thus, tillering and pre-

flowering phases can be identified as the two phenological phases in wheat development that 
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are more likely to be subject to and sensitive to heat stress. The observation of maximum 

temperature dynamics throughout the crop cycle in rainfed areas in Morocco further supports 

these results, showing that maximum daily temperatures exceed 26°C on average from the 

start of February, which coincides with the full tillering phase and the beginning of 

elongation in wheat crops. Furthermore, several studies have demonstrated that heat stress 

during the vegetative growth phase of wheat reduces photosynthesis and dry matter 

accumulation, affecting the first yield components such as tiller and spike number per plant. 

Heat stress events during the pre-anthesis stages also increase pollen sterility, leading to a 

decrease in grain number (Farooq et al., 2011; Porter and Gawith, 1999). 

In terms of rainfall, the RF model selected in-season total cumulative rainfall (Rtot) as an 

important predictor of wheat yield, rather than stage-specific cumulative rainfall. This could 

be due to variations in soil water storage capacity across different fields, which can blur the 

relationship between the timing of rainfall and the effective timing of water stress, and its 

impact on yield. On the other hand, the MR models identified cumulative rainfall at specific 

stages, particularly R5 (cumulative rainfall during the grain filling period), as a significant 

predictor variable for wheat yield. This discrepancy between the RF and MR models suggests 

an artificial correlation between Rtot and R5, which could be responsible for the 

identification of R5 as a predictor of final yield in MR models only. Dealing with 

multicollinearity using VIF results during MR model development is crucial to address this 

issue. 

Nitrogen fertilization-related variables were considered the most important predictors in the 

baseline models (S1) for both MR and RF methods, indicating the prevalence of insufficient 

N fertilization of wheat in Morocco overall. In MR models without leaf area index (LAI) 

variables, total nitrogen (Ntot) even emerged as the primary predictor of final yield. 

However, when LAI variables were included in MR and RF models, N-related variables 

Soil fertility variables had limited importance as predictors of wheat yield in the MR and 

RF models. Only pH and organic matter (OM) were identified as secondary predictors in the 

MR models. The scarcity of soil variables in yield prediction studies may be due to the 

difficulty of obtaining relevant soil fertility data. However, better results have been achieved 

by combining crop management practices or soil data with meteorological and satellite-based 

crop growth data for field-scale yield estimation (Basso et al., 2013; Hunt et al., 2019). The 

significance of soil-related variables depends on the specific environment, such as temperate 
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or continental climates with minimal water stress or countries where fertilization practices 

mitigate nitrogen stress. For example, in Denmark, MR and RF models have been developped 

using soil properties like soil texture and organic carbon parameters to extract the national 

winter wheat yield map (Roell et al., 2020; Schjønning et al., 2018). Similarly, in the USA, a 

regression model identified soil organic matter and wilting point as significant contributors to 

corn yield variation (Ansarifar, 2021) 

 

4.2. Impact of integrating a satellite-based dataset on yield prediction accuracies  

When considering LAI-related variables as predictors, LAI-Z50 consistently emerged as the 

primary predictor of yield in both RF and MR models. However, in this study, nitrogen 

fertilization and climate-related predictors  persisted alongside LAI-Z50 in yield prediction 

models, despite addressing multicollinearity during calibration (Han et al., 2020; Li et al., 

2022). This highlights the importance of integrating multiple variables as yield predictors in 

empirical models. LAI at end-tillering (LAI-Z30) did not emerge as a predictor, likely due to 

its strong correlation with LAI-Z50 and the variable growth dynamics compensating for low 

tillering LAI's impact on final yield. Notably, LAI-Z50 was not selected as a predictor only in 

region-specific RF models for favorable areas, potentially due to LAI-Z50 saturation 

resulting from high biomass density in late vegetative stages in these regions. 

Although LAI-Z50 was consistently chosen as a major predictor, its integration only 

marginally improved the MR or RF models' predictive capacity, reducing NRMSE by 1.8 to 

4.9%. The limited impact of integrating LAI-related variables could be attributed to the 

uncertainty surrounding these variables. The temporal resolution and image quality 

limitations of Sentinel-2 satellite data (5-day resolution and cloud cover) create 

incompatibilities with the actual observation dates of wheat development stages Z30 and Z50. 

Studies incorporating satellite-based variables such as NDVI, EVI, and LSWI have reported 

significant improvements in model accuracy (Balaghi et al., 2008; Han et al., 2020; Li et al., 

2022; Marszalek et al., 2022; Meroni et al., 2021). These studies often cover large geographic 

regions and utilize low to medium quality images acquired at higher frequencies during key 

wheat vegetative stages or from sowing to harvesting. Enhancing the accuracy of RF and MR 

models in this study could be achieved by extracting satellite-based variables like LAI at 

higher frequencies, specifically during vegetative stages. Additionally, combining 

biophysical variables like LAI with satellite-based vegetation indices related to water and 
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nutrient status, such as NDWI, EVI, or LSWI, could further improve the models' accuracy in 

predicting yield at the field scale. These indices capture leaf moisture content and indicate the 

occurrence and severity of water stresses experienced by the crop (Gao, 1996; Marszalek et 

al., 2022; Xiao et al., 2006). 

4.3.Empirical vs. crop models: Different skills for different uses 

4.3.1. Predictive capacity  

Past studies have reported higher model accuracy using empirical models instead of crop 

models to predict final yield (Estes et al., 2013; Prasad et al., 2022). However, in the present 

study, APSIM-wheat's predictive capacity was found to be higher than the tested empirical 

model (regardless of the method or calibration) in all pedoclimatic regions. NRMSE values 

with APSIM-wheat simulation were consistently below 20%. APSIM predictive quality was 

particularly better in unfavorable areas, while the RF approach struggled to fit a model and 

identify yield predictors in these regions, possibly due to a lower number of fields. 

This underscores the need to improve the representation of water stress and its effects on crop 

processes, particularly in drought-prone areas. Future improvements in empirical models, 

including using high-frequency time series of satellite-based variables, higher-quality images, 

better representations of plant water stress, and region-specific calibrations could 

significantly increase their predictive performances. In particular, integrating high-resolution 

time series of state-related variables representing plant water status or topsoil water content 

may enhance RF, MR, or other machine learning models in such contexts (Proctor et al., 

2022). The RF algorithm would be able to deal appropriately with this additional information 

as they can handle large datasets with numerous predictors. Besides, using a conditional 

approach (e.g. ―cforest ― function of the ―party‖ package (Strobl et al., 2008) ) ensures that 

variable importance is not biased toward correlated predictors. For MR models, increasing 

the number of predictors requires careful variable selection and handling of multicollinearity. 

Other machine learning methods like Gaussian process regression have shown higher 

performance in predicting yield (Bian et al., 2022), but it's uncertain if they can match the 

accuracy of a crop model like APSIM-wheat for Morocco's context. 

4.3.2. Capacity to support tactical adaptation of cropping practices in-season 

MR or RF models use integrated variables that describe the entire crop cycle or specific 

moments within it. This property enables in-season yield prediction as soon as major 
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predictors are obtained for the ongoing cycle. The effectiveness of these models applicability 

in-season  depends on the choice of best predictors. In this study, the baseline MR and RF 

models, which incorporate satellite-based variables, identified LAI-Z50 as the primary yield 

predictor, followed by Tmax2 and Ntot. These predictor values could be acquired in time to 

predict wheat yield a few days after the Z50 stage, occurring approximately two months 

before harvest in Morocco. RF agroclimate-specific models also allowed reasonably accurate 

yield prediction one to two months before harvest. However, the selection of Rtot and R5 as 

yield predictors in other models hindered their use for yield prediction before the grain filling 

stage. Overall, empirical models can appear more manageable for advising and supporting 

farmers compared to crop models. As a result, empirical models have been integrated into 

various tools and national operational systems for yield prediction in various countries (Fritz 

et al., 2019). 

However, the machine learning approach cannot be considered a complete surrogate for a 

decision support tool as they struggle to determine the effects of practice changes. For 

example, beyond fertilization amounts, which are important predictors in RF and MR models 

in this study, farmers may modify the type of applied N-fertilizers or add other minerals to 

the crop. The RF and MR models cannot anticipate the effects of such decisions, requiring a 

recalibration of the models to understand the impact of tactical adaptations on yield. In 

contrast, crop models like APSIM-wheat are designed to represent the key processes that 

determine crop production, considering interactions with soil, climate, and farming practices 

(Asseng et al., 2013) which confers more robustness to models and the capacity to simulate a 

larger range of cropping practices. The primary challenge preventing crop models from being 

widely used as decision support tools lies in the extensive data requirements for field-specific 

parameterization, including access to local daily weather data from sowing to harvest that 

hinders the possibility of running the model during the cropping season. To address this 

challenge, an ensemble of possible (generated or historic) climatic series can be utilized to 

complete the climate file in season. This approach has been employed in the development of 

commercial decision support tools like the Yield Prophet (Hunt et al., 2006) 

(https://www.yieldprophet.com.au/yp/Home.aspx), which advises farmers in-season based on 

APSIM-wheat simulations. Another potential strategy involves integrating remote sensing 

data, such as satellite images, into crop modeling tools to improve model calibration and 

correct dynamical model outputs in season (Huang et al., 2019). 
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4.3.3. Conservation of predictive capacity in the long term 

In the long-term perspective, mechanistic crop models such as APSIM may be more 

efficient in predicting yield despite the introduction of improved cultivars in cropping 

systems. Crop model algorithms maybe refined as new processes are integrated or revised 

into additional or improved modules but the core structure and principles of the model are not 

meant to be questioned by changes of the cropping environment or practices. Conversely, 

empirical models may require re-calibration and new predictors may be selected under 

changing environmental conditions, especially climate change, since climatic variables are 

major predictors for these models. Similarly, changes in fertilization practices, influenced by 

factors such as fertilizer and crop market prices or public policies, can impact the utility of 

some predictors, such as N2 or Ntot in the models assessed in this study. This, in turn, may 

increase model uncertainty if recalibration is not performed. 

An open question arises regarding whether advancements in remote sensing technologies, 

automated data analysis pipelines, and computational capabilities will alleviate the need for 

frequent recalibration of empirical models. Such recalibration would otherwise be necessary 

every few years or across different regions, in order to accommodate contextual changes. 

Several recent studies in the literature have suggested that, hybridization of process based 

models together with empirical models would result in improved predictive capacity both on 

long and short term (Maestrini et al., 2022; Shahhosseini et al. 2021; Zhang et al., 2023). 

While empirical models could support parameter estimation for crop models, crop output 

variable from crop models such as APSIM may be adequate predictors to statistical model 

and improve their predictive capacity. 

 

6. Conclusion  

While this work has not demonstrated a clear superiority of empirical models over a 

mechanistic model to predict crop yield in the case of wheat produced in the rainfed areas of 

Morocco, it evidenced the capacity of machine learning approaches to consistently identify 

the major yield determinants among a set of possible predictors, including when considering 

various algorithms. All the empirical models tested selected nitrogen fertilization and climatic 

variables as major yield predictors, before soil and crop management related variables: in 
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Morocco, rainfall and high temperatures are definitely the main determinants of yield, while 

soil and plant mineral status only explain marginal variation. Integrating recent advances in 

remote sensing, allowing the use of satellite-based vegetation indices such as LAI, into these 

models resulted in the incorporation of such variables as major predictors, before climatic 

predictors – but only slightly increased the models’ predictive capacity. The attempt to make 

empirical models more site-specific to capture variation of yield determinants from one 

region to another was not conclusive. It is difficult to conclude if this is due to climatic 

determinants being actually the same all over the production area or due to a lack of 

sensitivity of empirical algorithms. However, this attempt revealed that resource-limited 

situations were equally difficult to model and predict for empirical and mechanistic models. 

Rather than clearly supporting the superiority of one type of model over another (empirical 

vs. mechanistic), the result of this work advocated a complementary use of one or another 

approach depending on data availability but also on the targeted time horizon for yield 

simulations (one-year vs. decades) and the modeling objectives (in-season guidance for 

tactical adaptation of crop management vs. ex-ante or ex-post assessment of practices). 
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Figure 1. Location of the 125 monitored farmers’ fields across agroecological zones in 

Morocco. (A) Distribution of cumulative annual rainfall across Morocco (Wala et al., 

2019), (B) field locations and limits of the four agroclimatic zones in northern Morocco 

(favorable, intermediate, unfavorable, and mountain rainfed areas) (Gommes et al., 

2009). RA: Rainfed Area. 

 

Figure 2. Comparison of MR, RF, and APSIM-wheat models’ predictive performances 

calculated on the evaluation independent dataset. Coefficient of determination (R
2
), root 

mean square error (RMSE), and normalized root mean square error (NRMSE) are the 

statistical indices used to evaluate and compare models’ precision and accuracy, a) with 

and b) without integrating satellite-based variables. S1 refers to generic models while 

S2-Fav: favorable, S2-Int: Intermadiate, and S2-Unfav: Unfavorable rainfed areas, 

refer to agroclimate-specific models, respectively for favorable, intermediate, and 

unfavorable agroclimatic areas. 

 

Figure 3. Coefficient of determination (R
2
), root mean square error (RMSE) and 

normalized root mean square error (NRMSE) of multiple regression (MR) and random 

forests (RF) models calculated on the calibration dataset. S1: generic model. S2: region 

specific models with fav: favorable (>4000 mm per year), Int: intermediate (300 to 400 

mm) and Unfav: unfavorable (<300 mm) rainfed areas. a) with and b) without 

integrating satellite-based variables during the calibration process. 

 

Figure 4. Relative importance of the main predictors of wheat yield in multiple 

regression (MR) and random forests (RF) models when calibrated as: S1: generic 

models and S2: region-specific models with fav: for favorable, Int: for intermediate and 

Unfav: for unfavorable rainfed areas. a) with and b) without integrating satellite-based 

variables. 
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Table 1. Descriptive statistics for wheat yield in Moroccan rainfed areas. Figures in 

brackets indicate the number of fields in each zone. 

 

Table 2. Variables used to calibrate the empirical models of yield prediction in 

Moroccan rainfed areas. R1 to R5: Cumulative rainfall , Tmax1 to Tmax5 : means of 

maximum daily temperatures, Tmin1 to Tmin5: means of minimum daily temperatures 

and GDD1 to GDD5:  cumulative growing degree days, respectively at (1) emergence 

(Z0 to Z20), (2) tillering (Z20 to Z30), (3) elongation (Z30 to Z50), (4) heading and 

anthesis, (Z50 to Z70), and (5) grain filling and maturity (Z70 to Z90). Z0, Z30, Z50, 

Z70, Z90: developmental stages on Zadock’s scale. 
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Table 1. Descriptive statistics for wheat yield in Moroccan rainfed areas. Figures in 

brackets indicate the number of fields in each zone. 

 Wheat yield (Mg.ha
−1

) 

Favorable rainfed 

areas (61) 

Intermediate 

rainfed areas (44) 

Unfavorable 

rainfed areas (20) 
Overall 

Mean 

Median 

Maximum 

Minimum 

SD 

3.74 

3.80 

7.10 

0.50 

1.70 

1.81 

1.85 

3.80 

0.20 

1.04 

0.67 

0.60 

1.40 

0.20 

0.40 

2.57 

2.20 

7.10 

0.20 

1.82 
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Table 2. Variables used to calibrate the empirical models of yield prediction in 

Moroccan rainfed areas. R1 to R5: Cumulative rainfall , Tmax1 to Tmax5 : means of 

maximum daily temperatures, Tmin1 to Tmin5: means of minimum daily temperatures 

and GDD1 to GDD5:  cumulative growing degree days, respectively at (1) emergence 

(Z0 to Z20), (2) tillering (Z20 to Z30), (3) elongation (Z30 to Z50), (4) heading and 

anthesis, (Z50 to Z70), and (5) grain filling and maturity (Z70 to Z90). Z0, Z30, Z50, 

Z70, Z90: developmental stages on Zadock’s scale.  

Data type Variable Symbol Unit Description 

Climate 

Cumulative rainfall 

Minimum temperature 

Maximum temperature 

R1 to R5, Rtot 

Tmax1 to Tmax5, Tmax 

Tmin1 to Tmin5, Tmin 

mm 

°C 

°C 

See Section 

2.2.1 

Soil fertility 

Organic matter 

Available phosphorus  

Exchangeable potassium 

pH 

OM 

P 

K 

pH 

% 

ppm 

ppm 

- 

See Section 

2.2.2 

Crop management 

practices 

Cultivar 

Sowing dates 

Nitrogen fertilization 

Phosphorus fertilization 

Potassium fertilization 

VAR 

SD 

N0, N1, N2, Nd, Ntot 

P2O5 

K2O 

- 

Julian days 

kg.ha
−1

 

kg.ha
−1

 

kg.ha
−1

 

See Section 

2.2.3 

Duration of 

phenological stages 
Growing degree days GDD1 to GDD5, GDDtot C°.day

−1
 

See Sections 

2.2.1 

2.2.4 

Satellite-based 

metrics related to 

wheat growth 

Leaf area index LAIZ30, LAIZ50 m
2
.m

−2
 

See Section 

2.2.5 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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