Abstract :
[en] In this study, we aimed to develop a comprehensive microbial source amplicon database tailored for source tracking in veterinary settings. We rigorously tested our locally curated source tracking database by selecting a frequently accessed environment by veterinary students and veterinarians. By exploring the composition of resident microbiota and identifying potential sources of contamination, including animals, the environment, and human beings, we aimed to provide valuable insights into the dynamics of microbial transmission within veterinary facilities. The 16S rDNA amplicon sequencing was used to determine the bacterial taxonomic profiles of restroom surfaces. Bacterial sources were identified by linking our metadata-enriched local database to the microbiota profiling analysis using high-quality sequences. Microbiota profiling shows the dominance of four phyla: Actinobacteria, Bacteroidetes, Proteobacteria, and Firmicutes. If the restroom cleaning process did not appear to impact microbiota composition, significant differences regarding bacterial distribution were observed between male and female users in different sampling campaigns. Combining 16S rDNA profiling to our specific sources labeling pipeline, we found aquatic and human sources were the primary environment keywords in our campaigns. The probable presence of known animal sources (bovids, insects, equids, suids…) associated with bacterial genera such as Chryseobacterium, Bergeyella, Fibrobacter, and Syntrophococcus was also involved in restroom surfaces, emphasizing the proximity between these restrooms and the exchange of bacteria between people involved in animals handling. To summarize, we have demonstrated that DNA sequence-based source tracking may be integrated with high-throughput bacterial community analysis to enrich microbial investigation of potential bacterial contamination sources, especially for little known or poorly identified taxa. However, more research is needed to determine the tool’s utility in other applications.
Scopus citations®
without self-citations
1