Additive manufacturing; Directed energy deposition; Finite element modeling; Melt pool size; Nanohardness map; Numerical optimization; Laser power; Numerical optimizations; Nanoindentation; Microstructure characterization; Tool Steels; Hardness; Thermal modeling; Aisi M4
Abstract :
[en] A finite element model of directed energy deposition (DED) process predicts the thermal history during the manufacturing of high speed steel cuboid samples. The simulation result validation relies on comparisons between measured and predicted data such as temperature histories within the substrate and the melt pool depth of the last coating layer. Integrated within an optimization loop, these DED simulations identify two variable laser power functions able to generate a constant melt pool size. These functions are expected to provide a homogeneous microstructure over layers. The computed thermal fields and the microstructure generated by three AISI M4 experiments performed with the constant laser power case and the two optimized functions at three points of interest located at different depths within the deposit are correlated. The effect of the melt superheating temperature and the thermal cyclic history on micro and nanohardness measurements is observed. As a result, the optimized laser power functions provide samples with more homogeneous microhardness than the constant laser power function, however, the homogeneity of microstructure is not fully confirmed by the nanohardness map throughout the deposited M4 steel layers.
Research Center/Unit :
Sirris CAREM - Cellule d'Appui à la Recherche et à l'Enseignement en Microscopie - ULiège
Jardin, Rúben Tome; Department ArGEnCo-MSM, University of Liège, Liège, Belgium
Tuninetti, Víctor ; Department of Mechanical Engineering, Universidad de La Frontera, Temuco, Chile
Tchuindjang, Jérôme Tchoufack ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M) ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Metallic materials for additive manufacturing ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Science des matériaux métalliques
Duchene, Laurent ; Université de Liège - ULiège > Département ArGEnCo > Analyse multi-échelles dans le domaine des matériaux et structures du génie civil
Hashemi, Seyedeh Neda ; Université de Liège - ULiège > Département ArGEnCo > Département Argenco : Secteur MS2F
Tran, Hoang Son; Department ArGEnCo-MSM, University of Liège, Liège, Belgium
Carrus, Raoul; Sirris Research Centre (Liège), Seraing, Belgium
Mertens, Anne ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Habraken, Anne ; Université de Liège - ULiège > Département ArGEnCo > Département Argenco : Secteur MS2F ; Fonds de la Recherche Scientifique–F.R.S.-F.N.R.S., Brussels, Belgium
Language :
English
Title :
Optimizing laser power of directed energy deposition process for homogeneous AISI M4 steel microstructure
F.R.S.-FNRS - Fonds de la Recherche Scientifique UFRO - Universidad de La Frontera ERDF - European Regional Development Fund Walloon region Waalse Gewest
Funding text :
This work was funded by Walloon Region through the RW 11-1-7335 Recylclad project, FNRS F.R.S. [PDR T.0039.14], FEDER [IAWATHA], the cooperation agreement WBI/AGCID SUB2019/419031 (DIE19-0005) and Universidad de La Frontera (DI22-0067). As Research Director of FRS-FNRS, A.M.H. acknowledges the support of this institution. The Center for Applied Research and Education in Microscopy CAREM of ULiège is also thanked for providing SEM/EDS facilities. Computational resources were provided by the Consortium des Équipements de Calcul Intensif (CÉCI) funded by the F.R.S.-FNRS. The authors also acknowledge Olivier Dedry for providing additional thermophysical properties data and Hélène Morch for the improvement of the optimization method.
Alvarez, P., Montealegre, M.Á., Cordovilla, F., García-Beltrán, Á., Angulo, I., Ocaña, J.L., Direct Generation of High-Aspect-Ratio Structures of AISI 316L by Laser-Assisted Powder Deposition. Materials (Basel)., 13, 2020, 5670, 10.3390/ma13245670.
Tan, C., Zou, J., Li, S., Jamshidi, P., Abena, A., Forsey, A., Moat, R.J., Essa, K., Wang, M., Zhou, K., Attallah, M.M., Additive manufacturing of bio-inspired multi-scale hierarchically strengthened lattice structures. Int. J. Mach. Tools Manuf., 167, 2021, 103764, 10.1016/j.ijmachtools.2021.103764.
Huang, J., Qi, L., Luo, J., Zhao, L., Yi, H., Suppression of gravity effects on metal droplet deposition manufacturing by an anti-gravity electric field. Int. J. Mach. Tools Manuf., 148, 2020, 103474, 10.1016/j.ijmachtools.2019.103474.
Borovkov, A., Maslov, L., Tarasenko, F., Zhmaylo, M., Maslova, I., Solovev, D., Development of elastic–plastic model of additively produced titanium for personalised endoprosthetics. Int. J. Adv. Manuf. Technol. 117 (2021), 2117–2132, 10.1007/s00170-021-07460-1.
D. Gu, X. Shi, R. Poprawe, D.L. Bourell, R. Setchi, J. Zhu, Material-structure-performance integrated laser-metal additive manufacturing, Science (80-.). 372 (2021). Doi: 10.1126/science.abg1487.
Tan, C., Weng, F., Sui, S., Chew, Y., Bi, G., Progress and perspectives in laser additive manufacturing of key aeroengine materials. Int. J. Mach. Tools Manuf., 170, 2021, 103804, 10.1016/j.ijmachtools.2021.103804.
Shim, D.-S., Baek, G.-Y., Seo, J.-S., Shin, G.-Y., Kim, K.-P., Lee, K.-Y., Effect of layer thickness setting on deposition characteristics in direct energy deposition (DED) process. Opt. Laser Technol. 86 (2016), 69–78, 10.1016/j.optlastec.2016.07.001.
Ur Rahman, N., Capuano, L., Cabeza, S., Feinaeugle, M., Garcia-Junceda, A., de Rooij, M.B., Matthews, D.T.A., Walmag, G., Gibson, I., Römer, G.R.B.E., Directed energy deposition and characterization of high-carbon high speed steels. Addit. Manuf., 30, 2019, 100838, 10.1016/j.addma.2019.100838.
Jardin, R.T., Tuninetti, V., Tchuindjang, J.T., Hashemi, N., Carrus, R., Mertens, A., Duchêne, L., Tran, H.S., Habraken, A.M., Sensitivity Analysis in the Modelling of a High Speed Steel Thin-Wall Produced by Directed Energy Deposition. Metals (Basel)., 10, 2020, 1554, 10.3390/met10111554.
Wolff, S.J., Wang, H., Gould, B., Parab, N., Wu, Z., Zhao, C., Greco, A., Sun, T., In situ X-ray imaging of pore formation mechanisms and dynamics in laser powder-blown directed energy deposition additive manufacturing. Int. J. Mach. Tools Manuf., 2021, 10.1016/j.ijmachtools.2021.103743.
Murray, J.W., Speidel, A., Jackson-Crisp, A., Smith, P.H., Constantin, H., Clare, A.T., Unprocessed machining chips as a practical feedstock in directed energy deposition. Int. J. Mach. Tools Manuf., 169, 2021, 103803, 10.1016/j.ijmachtools.2021.103803.
Hascoët, J.Y., Touzé, S., Rauch, M., Automated identification of defect geometry for metallic part repair by an additive manufacturing process. Weld. World., 2018, 10.1007/s40194-017-0523-0.
Siva Prasad, H., Brueckner, F., Volpp, J., Kaplan, A.F.H., Laser metal deposition of copper on diverse metals using green laser sources. Int. J. Adv. Manuf. Technol. 107 (2020), 1559–1568, 10.1007/s00170-020-05117-z.
Xu, G., Song, C., Zhang, H., Lu, H., Wu, D., Luo, K., Lu, J., Spatially heterogeneous microstructure in in-situ TiO-reinforced Ti6Al4V/316L functionally graded material fabricated via directed energy deposition. Addit. Manuf., 59, 2022, 103178, 10.1016/j.addma.2022.103178.
Chen, H., Chen, Y., Liu, Y., Wei, Q., Shi, Y., Yan, W., Packing quality of powder layer during counter-rolling-type powder spreading process in additive manufacturing. Int. J. Mach. Tools Manuf., 153, 2020, 103553, 10.1016/j.ijmachtools.2020.103553.
Malakizadi, A., Hajali, T., Schulz, F., Cedergren, S., Ålgårdh, J., M'Saoubi, R., Hryha, E., Krajnik, P., The role of microstructural characteristics of additively manufactured Alloy 718 on tool wear in machining. Int. J. Mach. Tools Manuf., 171, 2021, 103814, 10.1016/j.ijmachtools.2021.103814.
Hojjatzadeh, S.M.H., Parab, N.D., Guo, Q., Qu, M., Xiong, L., Zhao, C., Escano, L.I., Fezzaa, K., Everhart, W., Sun, T., Chen, L., Direct observation of pore formation mechanisms during LPBF additive manufacturing process and high energy density laser welding. Int. J. Mach. Tools Manuf., 153, 2020, 103555, 10.1016/j.ijmachtools.2020.103555.
Furumoto, T., Abe, S., Yamaguchi, M., Hosokawa, A., Improving surface quality using laser scanning and machining strategy combining powder bed fusion and machining processes. Int. J. Adv. Manuf. Technol. 117 (2021), 3405–3413, 10.1007/s00170-021-07880-z.
Lu, J., Lu, H., Xu, X., Yao, J., Cai, J., Luo, K., High-performance integrated additive manufacturing with laser shock peening –induced microstructural evolution and improvement in mechanical properties of Ti6Al4V alloy components. Int. J. Mach. Tools Manuf., 148, 2020, 103475, 10.1016/j.ijmachtools.2019.103475.
Carluccio, D., Bermingham, M., Kent, D., Demir, A.G., Previtali, B., Dargusch, M.S., Comparative Study of Pure Iron Manufactured by Selective Laser Melting, Laser Metal Deposition, and Casting Processes. Adv. Eng. Mater., 21, 2019, 1900049, 10.1002/adem.201900049.
Soffel, F., Eisenbarth, D., Wegener, K., Effect of clad height, substrate thickness and scanning pattern on cantilever distortion in direct metal deposition. Int. J. Adv. Manuf. Technol. 117 (2021), 2083–2091, 10.1007/s00170-021-06925-7.
Hashemi, N., Mertens, A., Montrieux, H.M., Tchuindjang, J.T., Dedry, O., Carrus, R., Lecomte-Beckers, J., Oxidative wear behaviour of laser clad High Speed Steel thick deposits: Influence of sliding speed, carbide type and morphology. Surf. Coatings Technol. 315 (2017), 519–529, 10.1016/j.surfcoat.2017.02.071.
Jardin, R.T., Tchoufang Tchuindjang, J., Duchêne, L., Tran, H.-S., Hashemi, N., Carrus, R., Mertens, A., Habraken, A.M., Thermal histories and microstructures in Direct Energy Deposition of a High Speed Steel thick deposit. Mater. Lett. 236 (2019), 42–45, 10.1016/j.matlet.2018.09.157.
Shim, D.-S., Baek, G.-Y., Lee, E.-M., Effect of substrate preheating by induction heater on direct energy deposition of AISI M4 powder. Mater. Sci. Eng. A. 682 (2017), 550–562, 10.1016/j.msea.2016.11.029.
Razavi, S.M.J., Berto, F., Directed Energy Deposition versus Wrought Ti-6Al-4V: A Comparison of Microstructure, Fatigue Behavior, and Notch Sensitivity. Adv. Eng. Mater., 21, 2019, 1900220, 10.1002/adem.201900220.
Rahman Rashid, R.A., Javed, M.A., Barr, C., Palanisamy, S., Matthews, N., Dargusch, M.S., Effect of in situ tempering on the mechanical, microstructural and corrosion properties of 316L stainless steel laser-cladded coating on mild steel. Int. J. Adv. Manuf. Technol. 117 (2021), 2949–2958, 10.1007/s00170-021-07886-7.
Deng, T., Li, J., Zheng, Z., Fundamental aspects and recent developments in metal surface polishing with energy beam irradiation. Int. J. Mach. Tools Manuf., 148, 2020, 103472, 10.1016/j.ijmachtools.2019.103472.
Tuninetti, V., Gilles, G., Flores, P., Pincheira, G., Duchêne, L., Habraken, A.M., Impact of distortional hardening and the strength differential effect on the prediction of large deformation behavior of the Ti6Al4V alloy. Meccanica. 54 (2019), 1823–1840, 10.1007/s11012-019-01051-x.
Tuninetti, V., Flores, P., Valenzuela, M., Pincheira, G., Medina, C., Duchêne, L., Habraken, A.-M., Experimental characterization of the compressive mechanical behaviour of Ti6Al4V alloy at constant strain rates over the full elastoplastic range. Int. J. Mater. Form. 13 (2020), 709–724, 10.1007/s12289-020-01543-2.
Su, Y., Wang, Z., Lu, H., Luo, K., Lu, J., Improved wear resistance of directed energy deposited Fe-Ni-Cr alloy via closed-loop controlling laser power. J. Manuf. Process. 75 (2022), 802–813, 10.1016/j.jmapro.2022.01.047.
Su, Y., Wang, Z., Xu, X., Luo, K., Lu, J., Effect of closed-loop controlled melt pool width on microstructure and tensile property for Fe-Ni-Cr alloy in directed energy deposition. J. Manuf. Process. 82 (2022), 708–721, 10.1016/j.jmapro.2022.08.049.
Cong, W., Ning, F., A fundamental investigation on ultrasonic vibration-assisted laser engineered net shaping of stainless steel. Int. J. Mach. Tools Manuf. 121 (2017), 61–69, 10.1016/j.ijmachtools.2017.04.008.
Park, S.-H., Liu, P., Yi, K., Choi, G., Jhang, K.-Y., Sohn, H., Mechanical properties estimation of additively manufactured metal components using femtosecond laser ultrasonics and laser polishing. Int. J. Mach. Tools Manuf., 166, 2021, 103745, 10.1016/j.ijmachtools.2021.103745.
Tan, H., Zhang, C., Fan, W., Zhang, F., Lin, X., Chen, J., Huang, W., Dynamic evolution of powder stream convergence with powder feeding durations in direct energy deposition. Int. J. Mach. Tools Manuf., 157, 2020, 103606, 10.1016/j.ijmachtools.2020.103606.
Peng, L., Shengqin, J., Xiaoyan, Z., Qianwu, H., Weihao, X., Direct laser fabrication of thin-walled metal parts under open-loop control. Int. J. Mach. Tools Manuf. 47 (2007), 996–1002, 10.1016/j.ijmachtools.2006.06.017.
Woo, W., Kim, D.-K., Kingston, E.J., Luzin, V., Salvemini, F., Hill, M.R., Effect of interlayers and scanning strategies on through-thickness residual stress distributions in additive manufactured ferritic-austenitic steel structure. Mater. Sci. Eng. A. 744 (2019), 618–629, 10.1016/j.msea.2018.12.078.
Biegler, M., Wang, J., Kaiser, L., Rethmeier, M., Automated Tool-Path Generation for Rapid Manufacturing of Additive Manufacturing Directed Energy Deposition Geometries. Steel Res. Int., 91, 2020, 10.1002/srin.202000017.
Maurizi Enrici, T., Dedry, O., Boschini, F., Tchuindjang, J.T., Mertens, A., Microstructural and Thermal Characterization of 316L + WC Composite Coatings Obtained by Laser Cladding. Adv. Eng. Mater., 22, 2020, 2000291, 10.1002/adem.202000291.
Tran, H.-S., Tchuindjang, J.T., Paydas, H., Mertens, A., Jardin, R.T., Duchêne, L., Carrus, R., Lecomte-Beckers, J., Habraken, A.M., 3D thermal finite element analysis of laser cladding processed Ti-6Al-4V part with microstructural correlations. Mater. Des. 128 (2017), 130–142, 10.1016/j.matdes.2017.04.092.
Arrizubieta, J.I., Lamikiz, A., Cortina, M., Ukar, E., Alberdi, A., Hardness, grainsize and porosity formation prediction on the Laser Metal Deposition of AISI 304 stainless steel. Int. J. Mach. Tools Manuf. 135 (2018), 53–64, 10.1016/j.ijmachtools.2018.08.004.
Zhang, J., Yang, L., Li, Z., Zhang, Q., Yu, M., Fang, C., Xiao, H., Transport phenomenon, flow field, and deposition forming of metal powder in the laser direct deposition with designed nozzle. Int. J. Adv. Manuf. Technol. 114 (2021), 1373–1383, 10.1007/s00170-021-06913-x.
Lu, H., Wu, L., Wei, H., Cai, J., Luo, K., Xu, X., Lu, J., Microstructural evolution and tensile property enhancement of remanufactured Ti6Al4V using hybrid manufacturing of laser directed energy deposition with laser shock peening. Addit. Manuf., 55, 2022, 102877, 10.1016/j.addma.2022.102877.
Rojas-Ulloa, C., Bouffioux, C., Jaramillo, A.F., García-Herrera, C.M., Hussain, T., Duchêne, L., Riu, G., Josep Roa, J., Flores, P., Marie Habraken, A., Tuninetti, V., Nanomechanical Characterization of the Deformation Response of Orthotropic Ti–6Al–4V. Adv. Eng. Mater., 2021, 10.1002/adem.202001341.
Guan, T., Chen, S., Chen, X., Liang, J., Liu, C., Wang, M., Effect of laser incident energy on microstructures and mechanical properties of 12CrNi2Y alloy steel by direct laser deposition. J. Mater. Sci. Technol. 35 (2019), 395–402, 10.1016/j.jmst.2018.10.024.
Bertsch, K.M., Meric de Bellefon, G., Kuehl, B., Thoma, D.J., Origin of dislocation structures in an additively manufactured austenitic stainless steel 316L. Acta Mater. 199 (2020), 19–33, 10.1016/j.actamat.2020.07.063.
Zhang, Z., Liu, Z., Wu, D., Prediction of melt pool temperature in directed energy deposition using machine learning. Addit. Manuf., 37, 2021, 101692, 10.1016/j.addma.2020.101692.
Pham, T.Q.D., Hoang, T.V., Van Tran, X., Pham, Q.T., Fetni, S., Duchêne, L., Tran, H.S., Habraken, A.-M., Fast and accurate prediction of temperature evolutions in additive manufacturing process using deep learning. J. Intell. Manuf., 2022, 10.1007/s10845-021-01896-8.
Pham, T.Q.D., Hoang, T.V., Tran, X.V., Fetni, S., Duchêne, L., Tran, H.S., Habraken, A.M., Characterization, propagation, and sensitivity analysis of uncertainties in the directed energy deposition process using a deep learning-based surrogate model. Probabilistic Eng. Mech., 69, 2022, 103297, 10.1016/j.probengmech.2022.103297.
Cescotto, S., Charlier, R., Frictional contact finite elements based on mixed variational principles. Int. J. Numer. Methods Eng. 36 (1993), 1681–1701, 10.1002/nme.1620361005.
Habraken, A.M., Cescotto, S., Contact between deformable solids: The fully coupled approach. Math. Comput. Model. 28 (1998), 153–169, 10.1016/S0895-7177(98)00115-0.
Yuan, S., Duchêne, L., Keller, C., Hug, E., Folton, C., Betaieb, E., Milis, O., Habraken, A.-M., Mechanical response of nickel multicrystals for shear and tensile conditions at room temperature and 573 K. Mater. Sci. Eng. A., 809, 2021, 140987, 10.1016/j.msea.2021.140987.
Fetni, S., Enrici, T.M., Niccolini, T., Tran, H.S., Dedry, O., Duchêne, L., Mertens, A., Habraken, A.M., Thermal model for the directed energy deposition of composite coatings of 316L stainless steel enriched with tungsten carbides. Mater. Des., 204, 2021, 109661, 10.1016/j.matdes.2021.109661.
Khamidullin, B.A., Tsivilskiy, I.V., Gorunov, A.I., Gilmutdinov, A.K., Modeling of the effect of powder parameters on laser cladding using coaxial nozzle. Surf. Coatings Technol. 364 (2019), 430–443, 10.1016/j.surfcoat.2018.12.002.
Yin, H., Wang, L., Felicelli, S.D., Comparison of two-dimensional and three-dimensional thermal models of the LENS® process. J. Heat Transfer. 130 (2008), 1–7, 10.1115/1.2953236.
Morch, H., Duchêne, L., Harzallah, R., Tuninetti, V., Habraken, A.M., Efficient temperature dependence of parameters for thermo-mechanical finite element modeling of alloy 230. Eur. J. Mech. - A/Solids., 85, 2021, 104116, 10.1016/j.euromechsol.2020.104116.
Qu, S., Gong, Y., Effect of heat treatment on microstructure and mechanical characteristics of 316L stainless steel parts fabricated by hybrid additive and subtractive process. Int. J. Adv. Manuf. Technol. 117 (2021), 3465–3475, 10.1007/s00170-021-07786-w.