Doctoral thesis (Dissertations and theses)
La post-édition de traduction automatique en contexte d'apprentissage. Effets sur la qualité et défis pour l'enseignement de la traduction
Schumacher, Perrine
2023
Dataset
 

Files


Full Text
thèse-version-finale(pourOpenAccess).pdf
Author postprint (11.91 MB)
Download
Full Text Parts
La post-édition de traduction automatique en contexte d'apprentissage - Résumé FR et EN.pdf
Author postprint (414.9 kB)
Download
La post-édition de traduction automatique en contexte d'apprentissage - Table des matières.pdf
Author postprint (723.96 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
post-édition; traduction automatique neuronale; traduction humaine; expérience contrôlée; qualité en traduction; enseignement de la traduction; post-editese; effet nivelant en TA neuronale; étude comparative; CIRTI; post-editing; neural machine translation
Abstract :
[en] For the past few years, the translation industry has been shaped by a technological boom, largely driven by the advent of new translation technologies, such as neural machine translation (NMT). Hence, professional practices are changing, and adapting translation training programs has become a critical challenge both for translation training and for the future of the profession. In such context, this thesis is devoted to the study of an increasingly common practice in the language services industry: machine translation postediting (MTPE). Firstly, the main objective of our research is to investigate the effects of MTPE in an academic context on final text quality. Secondly, we seek to assess translation students' knowledge and perceptions regarding MT and PE. Thirdly, we aim to contribute to the debate on the introduction of MT and PE training courses in translation curricula. To meet these goals, we conducted two controlled experiments involving translation students to compare the outputs of two translation processes (English into French): human translation (HT) and post-editing using both statistical and neural MT. To analyse the empirical data gathered, we combined a qualitative approach (human quality assessment and linguistic analysis of errors contained in students’ products) with a quantitative approach (descriptive statistics, inferential statistics, and automatic linguistic analysis). Our findings show that PE of MT, whether statistical or neural, leads to products of an overall quality comparable to human-translated texts, or even of higher quality in the case of neural MTPE. Moreover, the fine statistical analysis mainly indicates that post-edited texts contain more calques than human-translated texts, and that NMT post-edited language contains fewer grammar and syntax errors compared to human-translated language. In addition, we note that PE quality depends on MT paradigm (statistical or neural), as well as on the neural MT engine used (Google Translate or DeepL). Our work also uncovers a leveling effect in neural MTPE on the quality of target texts, which demonstrates that the poorer the student’s translation skills, the more they will benefit from PE, and conversely, the higher their translation skills, the poorer the quality of their post-edited product. Further, part of our results suggests the existence of typical features that set post-edited language apart from human-translated language (i.e. Post-Editese). In the last part of this thesis, we substantiate our position in favour of MT Literacy training to educate informed, autonomous, and responsible users. Finally, based on our results and our pedagogical experience, we highlight the main issues and opportunities of MTPE and outline seven major challenges that need to be addressed in PE training.
Research Center/Unit :
CIRTI - Centre Interdisciplinaire de Recherches en Traduction et en Interprétation - ULiège
Disciplines :
Languages & linguistics
Author, co-author :
Schumacher, Perrine  ;  Université de Liège - ULiège > Centre Interdisciplinaire de Recherches en Traduction et en Interprétation (CIRTI)
Language :
French
Title :
La post-édition de traduction automatique en contexte d'apprentissage. Effets sur la qualité et défis pour l'enseignement de la traduction
Alternative titles :
[en] Machine Translation Post-Editing in an Academic Context. Impacts on Quality and Implications for Translation Education
Defense date :
30 August 2023
Institution :
ULiège - Université de Liège [Philosophie et Lettres], Liège, Belgium
UNIGE - Université de Genève [Faculté de traduction et d'interprétation], Genève, Switzerland
Degree :
Docteure en Langues, Lettres et Traductologie
Cotutelle degree :
Docteure en Traitement Informatique Multilingue
Promotor :
Bada, Valérie ;  Université de Liège - ULiège > Département de langues modernes : linguistique, littérature et traduction > Traduction de l'anglais vers le français
Bouillon, Pierrette;  UNIGE - Université de Genève [CH] > FTI
President :
Longrée, Dominique ;  Université de Liège - ULiège > Département des sciences de l'antiquité > Langue et littérature latines
Jury member :
Martikainen, Hanna;  Université de la Sorbonne Nouvelle Paris 3 > École Supérieure d'Interprètes et de Traducteurs (ESIT)
Fontenelle, Thierry ;  Université de Liège - ULiège > Département de langues modernes : linguistique, littérature et traduction > Philologie anglaise moderne ; BEI - Banque Européenne d'Investissement [LU]
Fontanet, Mathilde;  UNIGE - Université de Genève [CH] > Faculté de traduction et d'interprétation
Data Set :
Available on ORBi :
since 03 May 2023

Statistics


Number of views
238 (33 by ULiège)
Number of downloads
295 (11 by ULiège)

Bibliography


Similar publications



Contact ORBi